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Thermal equilibrium
▶ We have already seen that the momentum |⃗p| ∝ a−1, hence at early epochs, all particles will be

ultra-relativistic (almost massless). More massive particles would become non-relativistic earlier.
▶ The temperature of the relativistic species T ∝ a−1, so the universe would be hotter at early times (hence the name

hot Big Bang).
▶ If the particles interact among themselves, they can establish thermal equilibrium.
▶ Thermal equilibrium is established provided

1. there is efficient energy and momentum exchange between the particles during scattering (kinetic equilibrium),
2. there is efficient creation and destruction of particles during the interaction (chemical equilibrium).

▶ For example, when the temperature of radiation was higher than electron mass kBT > me ≈ 0.511 MeV, we expect
electrons and positrons to be produced by pair production and they annihilate to produce photons γ ←→ e− + e+.

▶ Photons would couple to (non-relativistic) e± via Thomson scattering as well e± + γ ←→ e± + γ.
▶ These interactions would establish equilibrium between γ, e+, e−.
▶ There could also be (neutral current) weak interactions (mediated by Z-bosons) of the type e− + e+ ←→ νe + ν̄e.
▶ Consequently, these interactions could establish a thermal equilibrium among these particles. The universe will be

filled with a hot plasma consisting of γ, e−, e+, νe, ν̄e all in thermal equilibrium at the same temperature.
▶ Such arguments can be extended to all particles in the standard model of particle physics. If some particles do not

interact with others, they may not be in thermal equilibrium.
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Detailed balance
▶ In absence of any interactions, the number density of particles of a species A evolves as nA ∝ a−3 (effect

of volume dilution), which can be written as a conservation equation

ṅA ≡
dnA
dt

= −3ȧ
a
nA = −3HnA.

The presence of interactions would introduce additional terms on the right hand side.
▶ Let us for the moment limit ourselves to processes of the form A+ B←→ L+M, which represent two-particle

scattering or annihilation.
▶ The evolution of species A is given by

ṅA = −3HnA − αnAnB + βnLnM.

▶ The parameter α = ⟨σv⟩ is the thermally averaged cross section for the interaction between A and B. The parameter β
is the same quantity for the reverse interaction.

▶ It can be related to α by demanding that in equilibrium −αn(0)A n(0)B + βn(0)L n(0)M = 0, where the densities with
superscript (0) denote the equilibrium values. Hence

β = α
n(0)A n(0)B

n(0)L n(0)M

.

This is known as the principle of detailed balance which is useful for relating forward and backward reaction rates.
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Comoving densities
▶ Hence the evolution equation becomes

ṅA
nA

+ 3H = −⟨σv⟩nB

[
1− n(0)A n(0)B

n(0)L n(0)M

nLnM
nAnB

]
.

▶ The interaction rate for A is simply
ΓA ≡ ⟨σv⟩nB.

▶ Let us define the comoving number densities, e.g., n0,A = nAa3, then

ṅA
nA

=
d ln nA

dt
=

d ln n0,A
dt

− 3
d ln a
dt

=
ṅ0,A
n0,A
− 3H,

hence
ṅ0,A
n0,A

= −ΓA

[
1−

n(0)0,An
(0)
0,B

n(0)0,Ln
(0)
0,M

n0,Ln0,M
n0,An0,B

]
.

▶ We can write in terms of a as the independent variable

d ln n0,A
da

=
d ln n0,A

dt
1

ȧ
=

ṅ0,A
n0,A

1

a H
=⇒ ṅ0,A

n0,A
= H

d ln n0,A
d ln a

▶ So the evolution of n0,A is given by

d ln n0,A
d ln a

= −ΓA

H

[
1−

n(0)0,An
(0)
0,B

n(0)0,Ln
(0)
0,M

n0,Ln0,M
n0,An0,B

]
.
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Decoupling and freeze out
▶

d ln n0,A
d ln a

= −ΓA

H

[
1−

n(0)0,An
(0)
0,B

n(0)0,Ln
(0)
0,M

n0,Ln0,M
n0,An0,B

]
.

The number of interactions the particle species encounter over the age of the universe will be ∼ ΓA/H. So the
evolution is determined by the number of interactions ∼ ΓA/H and the departure from equilibrium.

▶ When ΓA ≫ H, the system will naturally lead towards equilibrium. For example, if n0,A < n(0)0,A (and for simplicity
assume all the other species have their equilibrium value), then the right hand side will be positive. Thus n0,A will
increase rapidly because the interaction term is large. In case n0,A > n(0)0,A, the density will decrease rapidly. The
system will thus rapidly relax to a state where the abundances have their equilibrium values.

▶ Since the density of particles decreases because of expansion, it is expected that ΓA will decrease as the universe
expands.

▶ Although H also decreases with time, the decrease in ΓA is typically faster. We then expect the condition ΓA ≫ H to
change over to the condition ΓA ≲ H as the Universe evolves. In such a situation, a reaction which was initially able
to remain in equilibrium eventually falls out of equilibrium.

▶ At this point, the particle species A is said to have decoupled from the equilibrium.
▶ When ΓA ≪ H, the right hand side is negligible and the n0,A → constant (hence nA ∝ a−3), which is the equilibrium

density at the epoch of decoupling. This is the freeze-out value of the species.
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Major milestones of the hot Big Bang

Event t (approx) z (approx) T (approx) Description
Inflation 10−34 s ? → ∞ 1016 GeV ? perturbations generated
Baryogenesis ? ? ? explain the observed baryon density through

some mechanism without assuming any initial
asymmetry in matter and antimatter.

EW phase transition 10−11 s 1015 100 GeV electroweak force “breaks” into weak and electromagnetic
QCD phase transition 10−5 s 1012 100 MeV quarks & gluons bind into protons & neutrons
Dark matter freeze-out ? ? ? dark matter particles decouple
Neutrino decoupling 1 s 1010 1 MeV neutrinos decouple
Electron-positron annihilation 10 s 109 0.5 MeV e± annihilate into photons
Big Bang nucleosynthesis 3 m 108 100 keV nuclei of light elements form
Matter-radiation equality 6 × 104 y 3500 1 eV
Recombination 4 × 105 y 1100 0.2 eV neutral hydrogen atoms form
Photon decoupling 4 × 105 y 1100 0.2 eV photons decouple from matter, CMB originates
Formation of first stars 108 y 15 5 meV first galaxies form
Dark energy-matter equality 1010 y 0.4 0.3 meV
Present 1.4 × 1010 y 0 0.2 meV
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Equilibrium distribution function
▶ Since at early times, different species were in thermal equilibrium, we can describe the state using phase

space distribution function (the number of particles per unit volume per unit momentum volume) fA(⃗x, p⃗, t).
▶ If the universe is homogeneous, then fA(⃗x, p⃗, t) ≡ fA(⃗p, t). Further, isotropy implies fA(⃗p, t) ≡ fA(p, t).
▶ For a species A in thermal equilibrium, the phase space distribution is given by

fA(p, t) =
gA

(2πh̄)3
1

e[E(p)−µA]/kBTA(t) ± 1
,

1. gA is the spin-degeneracy factor for the species (it is 1 for neutrinos, 2 for photons and charged leptons and 6 for quarks),
2. µA is the chemical potential,

3. E(p) =
√

p2 + m2
A ,

4. TA(t) is the temperature characterizing the species and
5. the upper sign corresponds to fermions and the lower one to bosons.

▶ Some important macroscopic/thermodynamic quantities are:

– The number density: nA =

∫
d3p fA(p) = 4π

∫ ∞

0

dp p2 fA(p) =
gA

2π2h̄3

∫ ∞

mA

dE E
√

E2 − m2
A

e(E−µA)/kBTA ± 1
.

– The energy density: ρA =

∫
d3p E fA(p) = 4π

∫ ∞

0

dp p2
√

p2 + m2
A fA(p) =

gA
2π2h̄3

∫ ∞

mA

dE E2
√

E2 − m2
A

e(E−µA)/kBTA ± 1
.

– The pressure is given by kinetic theory as P = n⟨pv⟩/3 = n⟨p p/E⟩/3 = n⟨p2/E⟩/3. Hence

PA =

∫
d3p

p2

3E
fA(p) = 4π

∫ ∞

0

dp
p4

3
√

p2 + m2
A

fA(p) =
gA

6π2h̄3

∫ ∞

mA

dE (E2 − m2
A)

3/2

e(E−µA)/kBTA ± 1
.
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(Ultra-)relativistic limit
▶ In the relativistic limit kBTA ≫ mA. Also, in the early universe, kBTA ≫ µA (we will argue later).
▶ Then

nA =
gA

2π2h̄3

∫ ∞

mA

dE E
√

E2 − m2
A

e(E−µA)/kBTA ± 1
≈

gA
2π2h̄3

∫ ∞

0

dE E2

eE/kBTA ± 1
=

gA
2π2

(
kB
h̄

)3

T3A

∫ ∞

0

dy y2

ey ± 1
.

▶ For bosons, use the Riemann-zeta function ζ(n) =
1

Γ(n)

∫ ∞

0

dy yn−1

ey − 1
.

▶ For fermions, use
∫ ∞

0

dy yn−1

ey + 1
=

∫ ∞

0

dy yn−1

ey − 1
− 2

∫ ∞

0

dy yn−1

e2y − 1
=

(
1 −

1

2n−1

)
Γ(n)ζ(n).

▶
nA =

ζ(3)

π2

(
kB
h̄

)3

gAT
3
A for bosons,

=
3

4

ζ(3)

π2

(
kB
h̄

)3

gAT
3
A for fermions.

▶

ρA =
π2

30

(
k4B
h̄3

)
gAT

4
A for bosons,

=
7

8

π2

30

(
k4B
h̄3

)
gAT

4
A for fermions.

▶
PA =

1

3
ρA for bosons and fermions.
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Non-relativistic limit
▶ For non-relativistic particles kBTA ≪ mA

nA =
gA

2π2h̄3

∫ ∞

mA

dE E
√

E2 − m2
A

e(E−µA)/kBTA ± 1
≈ gA

2π2h̄3

∫ ∞

mA

dE E
√

E2 − m2
A e−(E−µA)/kBTA

=
gA

2π2h̄3
m3

A eµA/kBTA

∫ ∞

1

dx x
√

x2 − 1 e−xmA/kBTA ≈ gA

(
mAkB
2πh̄2

)3/2

T3/2A e(µA−mA)/kBTA .

▶ The density is given by

ρA = nAmA +
3

2
nAkBTA.

▶ The pressure is
PA = nAkBTA.

▶ Imagine two species ‘NR’ and ‘R’ at the same temperature T (e.g., non-relativistic electrons interacting with photons
via Compton scattering), then note that

nNR

nR
= gNR

(
mNRkBT
2πh̄2

)3/2

e(µNR−mNR)/kBT ×
(
fB,F

ζ(3)

π2

k3B
h̄3

gRT
3

)−1

∼
(
mNR

kBT

)3/2

e−mNR/kBT.

▶ Note that we have mNR ≫ kBT. Thus the number (and energy) density of non-relativistic particles is exponentially
damped by the factor e−mNR/kBT with respect to the relativistic particles.

▶ When a species becomes non-relativistic, the pair production cannot occur. However, the existing pairs can
annihilate, thus reducing the number of particles.
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Evolution after decoupling
▶ Consider a species A which decouples from the rest of the matter at a = aD. Subsequently, the species

would not interact with itself or any other species, hence the corresponding particles will have momenta p ∝ a−1.
▶ So the phase space distribution at a > aD would be fA(a, p) = fA(aD, pa/aD).

▶ The distribution of a relativistic species (with E, p≫ m) at a = aD is fA(aD, p) ≈
gA

(2πh̄)3
1

ep/kBTD ± 1
.

▶ Now, since they do not interact at a > aD, we must have fA(a, p) =
gA

(2πh̄)3
1

epa/aDkBTD ± 1
.

▶ Thus the phase space distribution will retain the equilibrium form with TD substituted by TA = aDTD/a, as long as the
particles remain relativistic, which ensures that TA scale as a−1.

▶ Note that if the particle A is non-relativistic at the time of decoupling (E ≈ mA + p2/2mA), assuming µA ≪ kBTD,

fA(aD, p) =
gA

(2πh̄)3
1

e(mA−µA)/kBTD ep2/(2mAkBTD)
≈ gA

(2πh̄)3
e−mA/kBTD e−p2/2mAkBTD .

▶ The distribution at a later time is simply given by

fA(a, p) =
gA

(2πh̄)3
e−mA/kBTD e−p2a2/2mAkBTDa

2
D ,

which has the Maxwell-Boltzmann form with temperature TA = TD(aD/a)2, thus TA ∝ a−2.
▶ In case µA cannot be ignored, one can find the evolution of µA from entropy conservation (discussed later).
▶ In case the species is neither ultra-relativistic nor non-relativistic, the distribution function would not retain the

equilibrium form in absence of interactions and cannot be described by a simple evolution of temperature.
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Relativistic degrees of freedom
▶ In the early universe, the total ρ is dominated by the relativistic species (both thermal and decoupled).
▶ For the thermal part, all the species have the same temperature T, so we can write

ρR,th =
∑

B∈bosons

π2

30

(
k4B
h̄3

)
gBT

4
+

∑
F∈fermions

7

8

π2

30

(
k4B
h̄3

)
gFT

4 ≡
π2

30

(
k4B
h̄3

)
g∗,thT

4
, g∗,th =

∑
B∈bosons

gB +
7

8

∑
F∈fermions

gF.

▶ The decoupled species may have temperatures different from T, hence we write

ρR,dec =
∑

B∈bosons

π2

30

(
k4B
h̄3

)
gBT

4
B +

∑
F∈fermions

7

8

π2

30

(
k4B
h̄3

)
gFT

4
F .

▶ In this case too, we write

ρR,dec =
π2

30

(
k4B
h̄3

)
g∗,dec(T)T

4, g∗,dec(T) =
∑

B∈bosons

gB

(
TB
T

)4

+
7

8

∑
F∈fermions

gF

(
TF
T

)4

.

▶ The effective number of relativistic degrees of freedom is defined as

g∗(T) = g∗,th + g∗,dec(T) =⇒ ρ = ρR =
π2

30

(
k4B
h̄3

)
g∗(T)T

4.

▶ As T decreases, various species become non-relativistic and their contribution is removed from g∗, hence g∗ decreases
with time. For kBT≫ 175GeV, all standard model particles are relativistic (and in equilibrium), g∗ = 106.75. At
present, only photons and neutrinos (if massless) are relativistic, g∗ = 3.36 (to be shown later).
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Entropy of the universe
▶ Consider the formula for entropy from the second law of thermodynamics

T dS = dE+ PdV = d(ρV) + PdV = Vdρ+ (ρ+ P)dV.

▶ Treating S to be function of T,V, and ρ ≡ ρ(T), P ≡ P(T), we get the relations

∂S
∂T

=
V
T

dρ
dT

,
∂S
∂V

=
ρ+ P
T

.

▶ Now use the integrability condition ∂2S/∂T∂V = ∂2S/∂V∂T to obtain

dP
dT

=
ρ+ P
T

.

▶ Inserting this in the second law, we get

TdS = d[(ρ+ P)V]− VdP = d[(ρ+ P)V]− (ρ+ P)V
dT
T

= Td
[
(ρ+ P)V

T

]
.

▶ So upto an additive constant, the entropy can be defined as

S =
(ρ+ P)V

T
,

which corresponds to a density

s =
ρ+ P
T

.
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Entropy of relativistic species
▶ For a species, the entropy density is

sA =
ρA + PA

TA
.

Clearly, the entropy for non-relativistic species will be exponentially suppressed.
▶ For a relativistic species

sA =
4ρA
3TA

=
2π2

45

(
k4B
h̄3

)
gAT

3
A for bosons,

=
7

8

2π2

45

(
k4B
h̄3

)
gAT

3
A for fermions.

▶ Similar to ρ, we write the total entropy density (essentially contributed by relativistic species) as

s = sR =
2π2

45

(
k4B
h̄3

)
g∗S(T)T

3, g∗S(T) = g∗S,th + g∗S,dec(T),

g∗S,th =
∑

B∈bosons

gB +
7

8

∑
F∈fermions

gF = g∗,th,

g∗S,dec(T) =
∑

B∈bosons

gB

(
TB
T

)3

+
7

8

∑
F∈fermions

gF

(
TF
T

)3

.

▶ The quantity g∗S(T) is the effective number of relativistic degrees of freedom in entropy.
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Conservation of entropy

▶ From Friedmann equations, we have

d(ρa3) = −Pd(a3) =⇒ d(ρRa
3) = −PRd(a3),

Note that the above may not hold for individual species if they are exchanging energy with others.
▶ Now, we also have

TdS = d(ρV) + PdV = d(ρa3) + Pd(a3) = 0.

Hence the entropy S = SR = sRa3 is conserved.
▶ One important consequence of the entropy conservation can be understood from the fact that

sR a3 = (2π2/45) (k4B/h̄
3) g∗S T3a3, and hence T ∝ a−1g−1/3

∗S .
▶ As long as g∗S remains constant, the temperature will decrease as T ∝ a−1 as expected.
▶ Whenever a species becomes non-relativistic, g∗S decreases, hence the combination T× a increases.
▶ In that case, conservation of entropy would imply that T will decrease slower than a−1 during the period when the

species becomes non-relativistic. During this period, the entropy of the species becoming non-relativistic gets
transferred to the rest of the relativistic particles. Once the species has become completely non-relativistic, it will no
longer contribute to g∗S, and T will again keep on decreasing as a−1.

▶ Thus T scales as a−1, except that there is a change in the amplitude of the scaling every time g∗S changes.

Tirthankar Roy Choudhury 13



Hubble expansion

▶ The expansion of the universe is given by (ignoring the curvature)

H2(t) =
ȧ2

a2
=

8πG
3

ρR =
8πG
3

g∗
π2

30

(
k4B
h̄3

)
T4 =

4π3

45

(
Gk4B
h̄3

)
g∗T

4 −→ 4π3

45

(
G

h̄3c5

)
g∗(kBT)

4

▶ As long as g∗ does not change, we get T ∝ a−1 and we obtain the standard result a ∝ t1/2. In that case H2 = 1/4t2.
▶ In early radiation dominated epoch (kBT ≳ 100 GeV), g∗ is fairly constant, hence we get

t =
(

45

16π3

)1/2 ( G
h̄3c5

)−1/2

g−1/2
∗ (kBT)

−2 ≈ 2.42× 10−6 s g−1/2
∗

(
kBT
GeV

)−2

.

▶ In general, we use T ∝ a−1g−1/3
∗S to write H2 ∝ ρR ∝

(
g∗/g

4/3
∗S

)
a−4. This can be solved to obtain the expansion rate.
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Baryon asymmetry

▶ Consider a relativistic fermion particle A and its antiparticle Ā in equilibrium with photons A+ Ā←→ γ (pair
production and annihilation).

▶ Since the photon number is not conserved in thermodynamic systems, we must have µγ = 0. Then the above
equilibrium state implies µĀ = −µA.

▶ For the relativistic cases, we have

nA =
gA

2π2h̄3

∫ ∞

mA

dE E
√

E2 − m2
A

e(E−µA)/kBTA + 1
≈ gA

2π2h̄3

∫ ∞

0

dE E2

e(E−µA)/kBTA + 1
, nĀ ≈

gA
2π2h̄3

∫ ∞

0

dE E2

e(E+µA)/kBTA + 1
.

▶ One can show that (for kBTA ≫ mA)

nA − nĀ ≈
gA

6π2h̄3
(kBTA)

3

[
π2

(
µA

kBTA

)
+

(
µA

kBTA

)3
]
.

This should hold for species like protons and electrons.
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Chemical potential
▶ Now, the baryons in the universe are mostly hydrogen, whose mass is contributed by protons.

In that case, we can assume that the net number of baryons would be the difference between protons and
anti-protons at the early epochs (when protons were relativistic). Hence

nb = np+ − np− ≈
gp

6π2h̄3
(kBT)

3

[
π2

(
µp

kBT

)
+

(
µp

kBT

)3
]
.

▶ Now, we know that at the present epoch

nb,0 =
ρb
mp

=
ρc,0Ωb,0

mp
≈ 1.12× 10−5 cm−3Ωb,0h

2, nγ,0 =
ζ(3)

π2

(
kB
h̄

)3

2T30 = 4.13× 102 cm−3.

▶ Using Ωb,0h2 ≈ 0.02, we get nb,0/nγ,0 ∼ 5× 10−10.
▶ This ratio should remain the same (at least to within order of magnitude) at early epochs as well.
▶ Now, if the protons, anti-protons and photons were in equilibrium at the same temperature T, then we have

nb
nγ
≈ gp

12ζ(3)

[
π2

(
µp

kBT

)
+

(
µp

kBT

)3
]
.

▶ Since this is a quantity ∼ 10−10, we expect µp/kBT ∼ 10−10. Thus, for all calculations, we can take µp → 0.
▶ The same argument holds for other particles, e.g., electrons as well. For example, we can use charge neutrality to

argue that ne− − ne+ = np+ − np− = nb, and the same conclusion can be reached for electrons.
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