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Solution of the horizon problem

▶ We have seen that the horizon size at, say, the recombination epoch (or the last scattering surface) is too small to
explain the isotropy of the CMB.

▶ We have also seen that the horizon size can be made arbitrarily large if we allow a(t) ∝ tα with α > 1. Note that this
implies

ä ∝ α(α− 1)tα−2 > 0,

i.e., the universe must accelerate.
▶ Invoking a phase of accelerated expansion, where the universe expands rapidly, can solve the horizon problem. Such

a accelerating phase is known as inflation.
▶ This can also be understood using the conformal time

η =

∫
dt
a(t)

= (1− α) tα0 t1−α = (1− α) t0 a(1−α)/α.

▶ When α < 1, we have η → 0 as a → 0. Thus, for a radiation dominated universe, the conformal time coordinate
begins from η = 0 at the Big Bang.

▶ However, when α > 1, we find that η → −∞ when a → 0. Thus the lower bound on η can be infinitely large
negative.
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Inflation and the flatness problem

▶ The flatness problem can also be solved within the inflationary universe.
▶ Note that for a(t) ∝ tα, we get

H(a) =
ȧ
a
∝ a−1/α.

▶ Let ai and af denote the scale factors at the start and end of inflation, respectively. Now we have already shown that
Ωk(a) = H2

0 Ωk,0/[H2(a) a2], and hence

Ωk(af)
Ωk(ai)

=
H2(ai)a2i
H2(af)a2f

≈
(
ai
af

)2−2/α

.

▶ Now, during inflation, we expect the scale factor to increase by a large amount af ≪ ai. If α > 1, we have
2− 2/α > 0. Hence

Ωk(af)
Ωk(ai)

≪ 1,

showing that the universe becomes highly flat at the end of inflation irrespective of its initial curvature. This solves
the flatness problem.
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Some details on inflation

▶ From the amplitude of density fluctuations observed, one expects the energy scale of inflation to be ∼ 1016 GeV,
which is ∼ 10−35 s after Big Bang.

▶ This energy scale corresponds to the Grand Unified Theory energy (the energy above which the electromagnetic,
weak and strong forces unify). For reference, the Planck energy scale is ∼ 1019 GeV.

▶ The scale factor should increase by a factor ∼ e60 ∼ 1026 during inflation to solve the horizon and flatness problems.
The increase is measured by the number of e-folds.

▶ After exiting from inflation, the universe evolves as in the radiation dominated era.
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Scalar field Lagrangian

▶ At very early times, it is not possible to have fluid-like matter. The most natural way to describe energy content in
the universe suring inflation is using (quantum) field theory.

▶ In field theory, one starts from a Lagrangian for the field and obtains the equation of motion. The Lagrangian (or
Hamiltonian) can be used to quantize the field if required.

▶ For example, the Lagrangian for the electromagnetic field, described by Ai, is L = − 1

16π
FikFik − Ai j

i.

▶ Similarly, the Lagrangian for the Dirac particles is L = ih̄ ψ̄ γk ψ;k − mψ̄ψ, ψ̄ = ψ† γ0.
▶ The simplest way to achieve inflation is via a scalar field Φ(xi) having the Lagrangian

L =
1

2
gik Φ;i Φ;k − V(Φ),

where V(Φ) is the potential under which the field evolves.
▶ The scalar field Φ that drives inflation is called the inflaton.
▶ The Euler-Lagrange equations are given by(

∂L
∂(Φ;i)

)
;i

=
∂L
∂Φ

=⇒ gik Φ;ik +
dV(Φ)
dΦ

= 0.
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Cosmological scalar fields
▶ At large scales, the scalar field must be homogeneous Φ = Φ(t).
▶ The Lagrangian resembles that of a particle in a potential

L =
1

2
Φ̇2 − V(Φ).

▶ In this case gik Φ;ik = Φ̈ + 3
ȧ
a
Φ̇, hence the equation of motion is

Φ̈ + 3
ȧ
a
Φ̇ +

dV(Φ)
dΦ

= 0.

This is nothing but the Klein-Gordon equation in an expanding universe.
▶ The effect of expansion, i.e., the ȧ/a term acts as a “damping” in the force equation.
▶ The equation can be written as

d
dt

[(
1

2
Φ̇2 + V(Φ)

)
a3
]
= −

(
1

2
Φ̇2 − V(Φ)

)
d(a3)
dt

,

which has the form d(ρa3) = −P d(a3).
▶ We can thus define an effective density and pressure for the scalar field

ρΦ =
1

2
Φ̇2 + V(Φ), PΦ =

1

2
Φ̇2 − V(Φ).
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Inflation driven by scalar fields

▶ The effective equation of state for the scalar field is

wΦ =
Φ̇2/2− V(ϕ)

Φ̇2/2 + V(ϕ)
.

▶ We have already seen the condition for inflation is accelerated expansion. This implies w < −1/3, hence we must
have

Φ̇2 < V(Φ).

▶ The Friedmann equations for a universe with a scalar field are

H2 =
8πG
3
ρΦ =

8πG
3

[
1

2
Φ̇2 + V(Φ)

]
, Ḣ =

ä
a
− ȧ2

a2
= −4πG(ρΦ + PΦ) = −4πG Φ̇2.

▶ These equations can be inverted to give

Φ =
1√
4πG

∫
dt

√
−Ḣ, V =

3H2

8πG
− 1

2
Φ̇2 =

1

8πG

(
3H2 + Ḣ

)
.

Given a form for a(t), the above can be solved to obtain V(Φ) parametrically in terms of t.
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Slow roll approximation
▶ In the extreme case when w → −1, we have exponential expansion. In that case Φ̇2 ≪ V(Φ), i.e., the

kinetic energy of the field must be small.
▶ In case we want Φ̇2 to remain small for a long period of time, we also need Φ̈ to be small.
▶ The Klein-Gordon equation then implies that V′(Φ) ≈ 0, i.e., the potential must be flat and the field must be rolling

down slowly in it. This is known as the slow roll approximation.
▶ Assuming Φ̈ → 0 in the Klein-Gordon equation, we get

3HΦ̇ ≈ −V′(Φ),

while putting Φ̇2 ≪ V(Φ) in the Friedmann equation gives

3H2 ≈ 8πG V(Φ).

▶ These two equations give

Φ̇

H
≈ − 1

8πG
V′(Φ)

V(Φ)
=⇒ Φ̇√

8πG/3
√

V(Φ)
≈ 1

8πG
V′(Φ)

V(Φ)
=⇒ 3Φ̇2

V(Φ)
≈ 1

8πG

[
V′(Φ)

V(Φ)

]2

and the slow roll condition gives
1

8πG

[
V′(Φ)

V(Φ)

]2

≪ 1.
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Slow roll parameters
▶ Let us next find out the implication of neglecting Φ̈ in the Klein-Gordon equation.
▶ Using Φ̇ ≈ −V′(Φ)/3H, we get

Φ̈ ≈ −V′′(Φ)

3H
Φ̇ +

V′(Φ)

3H2
Ḣ ≈ V′′(Φ)

V′(Φ)
Φ̇2 +

V′(Φ)

8πGV(Φ)
×

(
−4πGΦ̇2

)
≈

[
V′′(Φ)

V′(Φ)
− 1

2

V′(Φ)

V(Φ)

]
Φ̇2.

▶ Hence

Φ̈

HΦ̇
≈

[
V′′(Φ)

V′(Φ)
− 1

2

V′(Φ)

V(Φ)

]
Φ̇

H
≈ −

[
V′′(Φ)

V′(Φ)
− 1

2

V′(Φ)

V(Φ)

]
1

8πG
V′(Φ)

V(Φ)

≈ −

[
1

8πG
V′′(Φ)

V(Φ)
− 1

16πG

(
V′(Φ)

V(Φ)

)2
]
.

▶ So, in addition to the previous condition (8πG)−1(V′/V)2 ≪ 1, we must also have (8πG)−1(V′′//V) ≪ 1 for the
slow roll to persist.

▶ It is customary to define two slow roll parameters

ϵ =
1

16πG

[
V′(Φ)

V(Φ)

]2

, η =
1

8πG
V′′(Φ)

V(Φ)

and these parameters must be ≪ 1 for inflation to be effective.
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Exit from inflation

▶ The end of inflation happens when the slow roll conditions do not hold any more. This could be because the field
reached the minimum of the potential and oscillates rapidly.

V(Φ)

Φinflation

reheating

▶ If the scalar inflaton field is coupled to other fields (e.g., photons), then the inflaton energy can be converted into
radiation and the universe enters the radiation dominated phase. This process is known as reheating.

▶ Although the mechanism seems to work conceptually, the details are quite complex and still to be worked out fully.
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Cosmological constant and the vacuum energy
▶ We have already seen that the Einstein equation, in the presence of Λ, becomes

Rik −
1

2
gikR = 8πG

(
Tik +

Λ

8πG
gik

)
.

The Λ-term can be interpreted as the vacuum energy.
▶ In this interpretation, the vacuum is believed to have a stress-energy tensor

T(vac) ik =
Λ

8πG
gik =⇒ T(vac)

i
k =

Λ

8πG
δik =⇒ Pvac = −ρvac = − Λ

8πG
.

▶ Interestingly, if we demand that the vacuum stress tensor must be the same all inertial observers (otherwise we can
define an absolute reference frame), we can compute the equation of state of the vacuum energy.

▶ In the vacuum rest frame, we have T(vac)
0
0 = ρvac, T(vac)

α
α = −Pvac. Consider another frame moving with a speed v

along the x-direction, then

t′ = γ(t− vx), x′ = γ(x− vt) =⇒ t = γ(t′ + vx′), x = γ(x′ + vt′).

▶ In the primed frame, let us calculate, say,

T′(vac)
0

1 =
∂x′0

∂xm
∂xn

∂x′1
T(vac)

m
n = γ2v(ρvac + Pvac).

▶ The principle of special relativity implies that this component must vanish, hence we must have Pvac = −ρvac.
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Infinite vacuum energy
▶ Now, in absence of everything else, the vacuum energy would consist of quantum gravitational fluctuations

Evac =
∑
k⃗

1

2
h̄ω⃗k = V

∫
d3k
(2π)3

1

2
h̄ω⃗k.

▶ Writing h̄ω⃗k =
√

p⃗2 + m2 =
√

h̄2k⃗2 + m2, we find the energy density to be

ρvac =
Evac
V

=
1

16π3

∫
d3k

√
h̄2k⃗2 + m2 =

1

4π2

∫ kmax

0

dk k2
√

h̄2k2 + m2

=
1

4π2

[∫ k1

0

dk k2
√

h̄2k2 + m2 +

∫ kmax

k1

dk k2
√

h̄2k2 + m2

] (
k1 ≫ m

h̄
−→ mc

h̄

)
≈ 1

4π2

[
I(k1) + h̄

∫ kmax

k1

dk k3
]
≈ 1

4π2

[
I(k1) +

h̄
4
(k4max − k41)

]
≈ h̄

16π2
k4max −→

h̄c
16π2

k4max,

where we have taken kmax ≫ k1.
▶ Clearly the vacuum energy diverges unless the integral is cut-off at small scales (high energies).
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Magnitude of the vacuum energy
▶ The natural cut-off would the Planck scale LPl where the conventional quantum field theory breaks down and

quantum gravitational effects could be important. Then, we take kmax ∼ L−1
Pl , so that

ρvac ∼
h̄c
L4Pl
.

▶ Now, L2Pl = h̄G/c3, hence

ρvac ∼
h̄c7

h̄2G2
=

c7

h̄G2
≈ 4.6× 10114 erg cm−3,

which is the Planck energy density. The corresponding mass density is

ρvac ∼
c5

h̄G2
≈ 5.1× 1093 gm cm−3.

▶ The energy density corresponding to the cosmological constant is

ρΛ ∼ ρc,0 ∼ 10−29 gm cm−3.

▶ Hence
ρΛ
ρvac

∼ 10−122,

which is several order of magnitudes smaller than expected.
▶ This is known as the small cosmological constant problem.
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Cosmological constant as curvature

▶ A different interpretation of the cosmological constant is to write the Einstein equation as

Rik −
1

2
gikR− Λgik = 8πGTik.

▶ In this picture, Λ can be related to the curvature of the vacuum. If Tik = 0, we have

gikRik = R = −4Λ.

▶ The value of Λ, even in this case, needs to be fixed from observations and there is no natural way to determine its
value.
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The coincidence problem
▶ There is another problem related to the cosmological constant known as the coincidence problem.
▶ It turns out that we live in a special epoch when ΩΛ ∼ Ωm,0. For any other epoch

ΩΛ(a)
Ωm(a)

=
ΩΛa3

Ωm,0
∼ a3,

which shows that ΩΛ ≪ Ωm(a) at early epochs (and vice versa in the future).
▶ People have invoked the concept of dark energy which has an evolving ΩDE(a) such that the coincidence problem

does not arise.
▶ Consider a matter component having a time-varying equation of state, i.e., PDE(a) = wDE(a)ρDE(a).
▶ Now use the energy conservation equation

dρDE
dt

= −3
ȧ
a
(ρDE + PDE) = −3

ȧ
a
[1 + wDE(t)] ρ(t) =⇒ dρDE

da
= −3

a
[1 + wDE(a)] ρDE(a),

to obtain

ρDE(a) =
ρDE,0
a3

exp
[
3

∫ 1

a

da′

a′
wDE(a

′)

]
.

▶ A careful choice of wDE(a) might allow us to avoid the coincidence problem.
▶ A natural way to obtain evolving dark energy is to use a scalar field rolling down a potential. Such models are known

as quintessence.
Tirthankar Roy Choudhury 15


