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Constituents of our universe: radiation
▶ Let us now discuss the various constituents of our universe.
▶ We observe a blackbody radiation (CMB) at a temperature of 2.73 K, hence the corresponding energy density is

ρr,0 = aBT
4 = 7.56× 10−15erg cm−3K−4(2.73)4K4 ≈ 4.2× 10−13erg cm−3.

▶ Converting this to equivalent mass density, we get

ρr,0 ≈ 4.2× 10−13

(3× 108)2
gm cm−3 = 4.6× 10−34gm cm−3.

▶ Thus

Ωr,0 ≈ 4.6× 10−34

1.88× 10−29h2
= 2.45× 10−5h−2.

▶ There are also neutrinos which contribute to the relativistic matter density. We will show later that their contribution
can be computed theoretically. However, the cosmological neutrino is yet to be observed directly.

▶ If we include relativistic neutrinos too, then the value goes up to

Ωr,0 ≈ 4.3× 10−5h−2.

▶ Clearly Ωr,0 ≪ 1. However, since ρr ∝ a−4, their contribution will be significant at early times.
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Non-relativistic matter: baryons
▶ Galaxy survey and CMB fluctuation data indicate that for non-relativistic matter Ωm,0 ≈ 0.15 h−2.
▶ However, the baryon density can be estimated from abundances of light elements produced in Big Bang

nucleosynthesis (BBN). These imply Ωb,0 ≈ 0.02 h−2 (only ∼ 15% of total non-relativistic matter).
▶ The matter in stars can be computed from the luminosity function of galaxies (i.e., the number of galaxies per unit

volume in a given luminosity range). These observations (mostly B-band) imply LB,∗ ≈ 2× 108hL⊙Mpc−3.
▶ If all stars had mass-to-light ratio like the Sun, this would imply a mass density of stars

ρ∗,0 ≈ 2× 108hL⊙Mpc−3 =⇒ Ω∗,0 ≈ 7× 10−4h−1.
▶ In general, observations of galaxies imply a mass-to-light ratio of 2− 10, so even if we take a typical vale of 5, the

stellar density will be Ω∗,0 ≈ 0.003h−1.
▶ A substantial fraction of baryons are found as photoionized gas in the intergalactic space. These contribute

ΩIGM,0 ≈ 0.01 h−3/2.
▶ There is (cold) gas locked up in atoms, molecules etc, detected via absorption/emission lines from galaxies. These

make up to Ωcold,0 ≈ 5× 10−4h−1.
▶ There is also matter in hot gas in clusters, detected in X-ray, which give Ωcl,0 ≈ 0.0016h−3/2.
▶ There are also contributions from the circumgalactic medium and other sources. However, these do not add up to the

value implied by the BBN. This is sometimes called the missing baryon problem.
▶ It is believed that the rest is in the warm-hot intergalactic medium (WHIM) which is difficult to detect directly.
▶ At high redshifts z ∼ 2− 3, the relative contributions of the components are different.
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Non-relativistic matter: (cold) dark matter

▶ Bulk of the non-relativistic matter (Ωm,0 − Ωb,0 ≈ 0.13h−2) is
in the form of dark matter.

▶ The indication for dark matter was already known in various
astrophysical observations. For example, virial theorem
applied to (Coma) cluster gives ⟨v2⟩ = GM/R. We can
measure ⟨v2⟩ from redshifts and also measure the size =⇒
calculate M. Observations imply M ∼ 10Mgas.

▶ For the rotation curve of spiral galaxies, we expect v ∝ R−1/2

beyond the galaxy (visible) mass. However, one observes “flat”
rotation curves =⇒ require ρ ∝ R−2.

▶ All these observations indicate that there is a matter which
does not emit or absorb light, but is more abundant than the
normal matter. There is no viable candidate in the so-called
standard model of particle physics.

▶ The matter should be non-relativistic (hence “cold”), and can
have weak interactions (in addition to gravity). Yet to be
detected directly.
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Curvature of the Universe

▶ It is possible to measure the curvature Ωk,0 using CMB observations. They indicate Ωk,0 ≈ 0 =⇒ Ωtot,0 ≈ 1, a flat
universe.

▶ Since Ωm,0 ≈ 0.3, it means that there must be a component which contributes the rest.
▶ Since this component does not manifest itself in galaxy surveys (i.e., observations of large-scale structure), it must

not cluster at small scales. This implies that the component of matter behaves very differently under gravity
compared to normal matter.

▶ A more direct evidence of such a component was found from observations of Supernova Type Ia (SN Ia).
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Supernova lightcurves

▶ It is possible to measure distances to nearby SN Ia (e.g., using
Cepheids) and hence obtain their luminosity.

▶ Their luminosities are highly (anti-)correlated with the time
taken for the lightcurve to decline, i.e., brighter the supernova,
slower the lightcurve declines.

▶ When corrected for this effect, the luminosities of all type Ia
supernovae are the same. They are thus “standard candles”.

▶ Hence, just the observations of flux can allow measurement of
luminosity distances. In addition, one can measure the
redshifts from the spectra (e.g., Silicon absorption line). This
allows us to obtain dL(z).

Perlmutter (2003)
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The acccelerating universe
▶ We have already seen that, for a flat model,

dL(z) = R0Sk(χ)(1 + z) = R0 (1 + z) χ = R0 (1 + z)× 1

R0

∫ z

0

dz′

H(z′)
= (1 + z)

∫ z

0

dz′

H(z′)
.

▶ This can be inverted to give
1

H(z)
=

d
dz

[
dL(z)
1 + z

]
.

Thus, the observations can be used to compute H(z), or H(a), or ȧ(a).
▶ The data imply acceleration at a ≳ 0.6.

Padmanabhan & TRC (2003); updated 2013
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Dark energy

▶ The acceleration of the Universe implies

ä
a
= −4πG

3
(ρ+ 3P) > 0 =⇒ ρ+ 3P < 0.

▶ Assuming P = wρ and ρ positive, we get

w < −1

3
.

Such a component is called dark energy.
▶ The cosmological constant with w = −1 is a candidate for this. Indeed observations favour w ≈ −1.
▶ In fact, acceleration for a > 0.6 for a flat model implies

Ωm,0

ΩΛ,0
≈ 0.4 =⇒ Ωm,0 ≈ 0.3, ΩΛ,0 ≈ 0.7.
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The Hubble constant

▶ The next parameter of interest in the standard cosmological model is the Hubble constant H0. Hubble
measured its value to be ≈ 500 km s−1 Mpc−1.

▶ Better observational data in recent times has given a much smaller value H0 ≈ 70 km s−1 Mpc−1.
▶ The value can be measured from distance measurement to nearby galaxies using Cepheids.
▶ It an also be measured using cosmological observations, e.g., CMB.
▶ There seems to be a mismatch between the two measurements: Hubble tension or H0 tension.

Freedman et al (2019)

▶ Independent measurement from the brightest red giant stars (“Tip of the Red Giant Branch”).
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The standard model: flat ΛCDM

▶ Several observations, led by the CMB fluctuations and complemented by Supernova Ia, Big Bang nulceosynthesis,
galaxy surveys, and so on have led to a cosmological model that agrees with “almost all” observations.

▶ The model can be described by six parameters.
▶ Three of them are: H0 (Hubble parameter today), Ωm,0 (matter density), Ωb,0 (baryon density). Flatness implies that

ΩΛ,0 = 1− Ωm,0.
▶ Two are related to the primordial fluctuations in the density field: ns (the power-law slope) and As (the normalization).
▶ The sixth is related to the formation of the first stars: τ (the optical depth to reionization).
▶ The present constraints are (from Planck-2018)

Ωm,0 ≈ 0.3111± 0.0056 ns ≈ 0.9665± 0.0038

Ωb,0 ≈ 0.0490± 0.0009 As ≈ (2.105± 0.030)× 10−9

H0 ≈ (67.66± 0.42)km s−1 Mpc−1 τ ≈ 0.0561± 0.0071

▶ Note: ΩDM,0 ≈ 0.2621, ΩΛ,0 ≈ 0.6889, t0 ≈ 13.787 Gyr.
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Evolution of different components

H2(a) = H2
0

[
Ωr,0

a4
+

Ωm,0

a3
+ΩΛ,0

]
.

10-5 10-4 10-3 10-2 10-1 100 101

scale factor a

10-9

10-7

10-5

10-3

10-1

101

103

105

107

109

1011

1013

1015

ρ
(a

)/
ρ
c,
0

radiation
matter
cosmological constant

H 2(a)/H 2
0

Three phases: radiation-dominated, matter-dominated and Λ-dominated.
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Epochs of equality
▶ At very small a, the universe is radiation-dominated.
▶ The value of a when Ωm(a) = Ωr(a) is given by

Ωm,0a
−3
eq = Ωr,0a

−4
eq =⇒ a−1

eq = 1 + zeq =
Ωm,0

Ωr,0
≈ 7000h2 ≈ 3500.

This is known as the epoch of matter-radiation equality.
▶ At a ≫ aeq, the universe becomes matter-dominated, until the cosmological constant takes over.
▶ One can obtain the epoch when matter density became equal to the cosmological constant as

Ωm,0a
−3
eq = ΩΛ,0 =⇒ aeq =

(
Ωm,0

ΩΛ,0

)1/3

≈ 0.75 =⇒ a−1
eq = 1 + zeq ≈ 1.33.

▶ In terms of z, the Hubble parameter is given by

H(z) = H0

√
Ωr,0(1 + z)4 +Ωm,0(1 + z)3 +ΩΛ,0

▶ Interestingly, if we consider the epoch, say 2 < z < 1000, we can see that the radiation term is sub-dominant, while
the matter term dominates over the Λ-term. Hence, one can approximate

H(z) ≈ H0

√
Ωm,0 (1 + z)3/2.

This is almost identical to an Einstein-deSitter Universe.
Tirthankar Roy Choudhury 11



Difficulties/problems with the standard model

▶ We have already discussed a serious tension in the value of H0, the so-called “Hubble tension”.
▶ Both “Λ” and “CDM” are not understood in the ΛCDM model.
▶ There exist some difficulties related to the initial conditions. These are the horizon problem and the flatness problem.
▶ In addition, there are several problems with the value of Λ.
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Horizon size at recombination epoch
▶ Recall that we have already calculated the size of the horizon at cosmic time t (assuming a(t) = (t/t0)α)

dhor(t) = a(t)
∫ t

0

dt′

a(t′)
=

t
1− α

, when α < 1,

and dhor(t) → ∞ when α ≥ 1.
▶ Let us now compute the horizon size at the epoch of recombination trec, i.e., the epoch at which the universe became

neutral and CMB originated. In terms of redshift, this corresponds to zrec ≈ 1100.
▶ For simplicity, let us assume that the universe was radiation dominated till t = trec (in reality, the radiation

domination ended at z ≈ 3500).
▶ During radiation-dominated era, a(t) ∝ t2/[3(1+w)] ∝ t1/2, hence

dhor(trec) = 2trec −→ 2ctrec.

▶ Now, to estimate the horizon size, we need to know trec. For that we assume that the universe is matter-dominated
from trec to today t0 (i.e., we ignore Λ for the time being). In that case, we know a(t) ∝ t2/3, i.e.,

arec =

(
trec
t0

)2/3

=⇒ trec = t0 a3/2rec ≈ 4× 105 years,

assuming t0 = 13.8 Gyr.
▶ So, dhor(trec) ≈ 0.25 Mpc.
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Angular size of causally connected regions

▶ Hence, points that are separated by distances larger than dhor(trec) ∼ 0.25 Mpc could not have any causal connection
when the CMB originated.

▶ Since we observe the CMB in terms of angles in the sky, let compute the angular size of dhor(trec). This is

θhor(trec) ≡
dhor(trec)
dA(trec)

.

▶ The angular diameter distance is

dA(zrec) =
1

1 + zrec

∫ zrec

0

dz′

H(z′)
≈ 1

1 + zrec

∫ zrec

0

dz′

H0

√
Ωm,0 (1 + z′)3/2

=
2
(√

1 + zrec − 1
)

H0

√
Ωm,0 (1 + zrec)3/2

which gives dA(zrec) ≈ 14 Mpc. Hence

θhor(trec) ≈
0.25

14
≈ 1◦.

▶ Thus, points separated by angle larger than 1◦ on the CMB sky never came into causal contact before the CMB was
formed. Then, why does the CMB look so isotropic over the whole sky? This is known as the horizon problem.

▶ In fact, as per this calculation, we expect the CMB to be consisting of ∼ 50, 000 causally disjoint regions.
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Visual representation of the problem
▶ To understand the horizon problem visually, let us define a time coordinate

η =

∫
dt
a(t)

,

so that the metric becomes ds2 = a2(η)
[
dη2 − dχ2 − χ2dΩ2

]
(assuming k = 0).

▶ This new time coordinate is known as the conformal time.
▶ In terms of η, the radial light rays move along the 45◦ sloped lines η = ±χ in the spacetime diagrams.

η

χ

η0

ηrec
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Evolution of curvature
▶ Imagine for a moment that the universe has a curvature. The Hubble parameter is then

H2(a) = H2
0

[
Ωr,0

a4
+

Ωm,0

a3
+ΩΛ,0 +

Ωk,0

a2

]
, Ωk,0 ≡ 1− Ωtot,0 = 1− Ωr,0 − Ωm,0 − ΩΛ,0.

Present observations, of course, indicate Ωtot ≈ 1.
▶ At an earlier epoch a, the matter density parameter is

Ωm(a) ≡
ρm(a)
ρc(a)

=
ρm,0a−3

3H2(a)/8πG
=

ρm,0

3H2
0/8πG

a−3

H2(a)/H2
0

= Ωm,0
a−3

H2(a)/H2
0

.

Similarly

Ωr(a) = Ωr,0
a−4

H2(a)/H2
0

, ΩΛ(a) = ΩΛ,0
1

H2(a)/H2
0

.

▶ Then, the curvature part evolves as

Ωk(a) = 1− Ωr(a)− Ωm(a)− ΩΛ(a) = 1− Ωm,0a−3 +Ωr,0a−4 +ΩΛ,0

Ωm,0a−3 +Ωr,0a−4 +ΩΛ,0 +Ωk,0a−2

=
Ωk,0a−2

Ωm,0a−3 +Ωr,0a−4 +ΩΛ,0 +Ωk,0a−2
=

H2
0 Ωk,0

H2(a) a2
.
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Fine-tuned flat universe at early times

▶ Consider a very early epoch a ≪ 1. Then only the radiation term contributes in the denominator

Ωk(a) ≈
Ωk,0a2

Ωr,0
.

▶ Suppose Ωk,0 = 0.5 today, then at, say, a = 10−8, we have

Ωk(a) ≈ 6× 10−13 =⇒ Ωtot(a) ≈ 0.9999 9999 9999 4

▶ Suppose, instead we had at a = 10−8 the value

Ωtot(a) ≈ 0.9999 9999 9999 9 =⇒ Ωk,a ≈ 10−13

we would have ended up with Ωk,0 ≈ 0.086.
▶ This shows that the initial curvature needs to be extremely fine-tuned close to zero in order to provide the value of

Ωk,0 observed today. This is known as the flatness problem.
▶ Most likely the initial conditions were generated much earlier. Smaller values of a would make the problem much

worse.
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