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The Einstein tensor
▶ Till now, we have studying the properties of the FLRW metric without solving for the dynamics.

The Einstein equation would determine the dependence of the expansion on the components of the universe.
▶ Let us use the form of the metric as

ds2 = dt2 − R2(t)
[

dr2

1− kr2
+ r2(dθ2 + sin2 θ dϕ2)

]
.

We will use c = 1 again and put back factors of c when needed.
▶ The components of Einstein tensor are

G0
0 = g00G00 = 3

k+ Ṙ2

R2

G1
1 = g11G11 =

k+ Ṙ2 + 2RR̈
R2

G2
2 = g22G22 =

k+ Ṙ2 + 2RR̈
R2

G3
3 = g33G33 =

k+ Ṙ2 + 2RR̈
R2

.

▶ Also recall that the stress-energy tensor is (using c = 1)

Ti j = diag(ρ,−P,−P,−P).
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Friedmann equations
▶ The 0

0 component of Einstein equation Gi
j = 8πG Ti j turns out to be

Ṙ2

R2
+

k
R2

=
8πG
3

ρ.

▶ The α
α component gives

Ṙ2

R2
+

k
R2

+ 2
R̈
R
= −8πGP,

which, when combined with the previous equation, becomes

R̈
R
= −4πG

3
(ρ+ 3P).

▶ We find that the acceleration is produced, not by the energy density alone, but by the combination ρ+ 3P.
▶ The above differential equations are called Friedmann equations.
▶ The two Friedmann equations can be combined to give the energy conservation equation

ρ̇ = −3
Ṙ
R
(ρ+ P) .

This is a confirmation of the fact that the equations of motion are contained within the Einstein equation.
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Critical density and density parameter
▶ If the universe is flat k = 0, then the expansion rate is related to the density by

H2(t) =
Ṙ2

R2
=

8πG
3

ρ(t).

▶ Thus, the flat universe has a very particular density, which called the critical density:

ρc(t) ≡
3H2(t)
8πG

.

▶ The value of ρc at present is given by ρc,0 = 3H2
0/8πG = 1.88× 10−29h2 gm cm−3 = 2.78× 1011h2M⊙Mpc−3.

▶ A universe which is spatially closed (k = +1) will have

H2(t) =
8πG
3

ρ(t)− k
R2

<
8πG
3

ρ(t) =⇒ ρ(t) > ρc(t).

▶ A spatially open (k = −1) will have ρ(t) < ρc(t).
▶ The density parameter is defined as

Ω(t) ≡ ρ(t)
ρc(t)

=
8πG ρ(t)
3H2(t)

.

The value at the present epoch is denoted by Ω0 or simply Ω.
▶ Thus, a closed universe (k > 0) corresponds to Ω(t) > 1, while an open universe (k < 0) corresponds to Ω(t) < 1.

The Ω(t) = 1 universe is spatially flat.
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The present value of the scale factor

▶ The value of R0 ≡ R(t0) for k ̸= 0 universe can be obtained by evaluating the first Friedmann equation at the present
epoch t0

H2
0 +

k
R2
0

=
8πG
3

ρ0 = H2
0
ρ0
ρc,0

= H2
0Ω0 =⇒ R2

0 =
k

H2
0(Ω0 − 1)

,

and hence

R0 =
1

H0

√
k

Ω0 − 1
.

▶ We can define a parameter which is the “effective density of the curvature”:

Ωk(t) ≡ 1− Ω(t).

▶ The value of R0 becomes

R0 =
1

H0

√
−k
Ωk,0

=
1

H0

√
|Ωk,0|

.

▶ When k = 0, the value of R0 cannot be determined. However, it turns out that all the observables are independent of
R0 for the flat universe.
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The normalized scale factor
▶ We can define a normalized scale factor

a(t) ≡ R(t)
R0

,

so that its present value is unity.
▶ Note that H(t) = ȧ/a.
▶ In terms of a, the metric becomes

ds2 = dt2 − a2(t)R2
0

[
dr2

1− kr2
+ r2dΩ2

]
= dt2 − a2(t)

[
dr′2

1− kr′2/R2
0

+ r′2dΩ2

]
,

where r′ = R0r. For the other form

ds2 = dt2 − a2(t)R2
0

[
dχ2 + S2k (χ)dΩ

2] = dt2 − a2(t)
[
dχ′2 + R2

0S
2
k (χ

′/R0)dΩ
2] ,

where χ′ = R0χ.
▶ It is interesting to note that R0 cancels out from the expressions only when k = 0, hence the value of R0 has no

relevance in the flat universe.
▶ All the expressions we have obtained so far can be re-written in terms of a(t). For example,

1 + z =
1

a(t)
.
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General solutions to the Friedmann equations
▶ Consider a universe with various non-interacting components with equation of state Pα = wαρα.
▶ Each of these components evolve as ρα ∝ a−3(1+wα), or

ρα(t) = ρα,0 a−3(1+wα).

▶ Then the first Friedmann equation gives

H2(a) =
8πG
3

∑
α

ρα − k
R2
0a2

=
8πG
3

∑
α

ρα,0 a−3(1+wα) − k
R2
0a2

= H2
0

∑
α

Ωα,0

a3(1+wα)
− k

R2
0a2

.

▶ At the present epoch t = t0, a = 1, we get

k
R2
0

= H2
0

(∑
α

Ωα,0 − 1

)
= −H2

0Ωk,0, Ωk,0 ≡ 1−
∑
α

Ωα,0 = 1− Ωtot,0.

▶ The Hubble parameter is then given by

H2(a) = H2
0

[∑
α

Ωα,0

a3(1+wα)
+

Ωk,0

a2

]
.
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General solutions to the Friedmann equations (contd)
▶

H2(a) =
ȧ2

a2
= H2

0

[∑
α

Ωα,0

a3(1+wα)
+

Ωk,0

a2

]
.

▶ In principle, this can be solved to obtain a(t) provided we know all the source components present in the Universe.
▶ Also, given H(a) or equivalently

H2(z) = H2
0

[∑
α

Ωα,0 (1 + z)3(1+wα) +Ωk,0 (1 + z)2
]
,

we can calculate all observables like the distances etc.
▶ Note that curvature acts as a component having density parameter Ωk and equation of state wk = −1/3.
▶ The density parameter for any of the components β at any epoch a can be written as

Ωβ(a) =
ρβ(a)
ρc(a)

=
8πGρβ(a)
3H2(a)

=
8πGρβ,0 a−3(1+wβ)

3H2
0

(∑
α Ωα,0a−3(1+wα) +Ωk,0/a2

)
=

Ωβ,0 a−3(1+wβ)∑
α Ωα,0a−3(1+wα) +Ωk,0/a2

.
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Flat single-component universe
▶ Consider the case where the universe is flat (k = 0) and is filled with only one kind of matter which has

an equation of state P = wρ. This can happen, e.g., when one of the components dominates over all others.
▶ Then the density evolve as

ρ(t) = ρ0 a−3(1+w).

Also Ω(t) = 1 because k = 0.
▶ Then the solution can be obtained from

H2(t) =
ȧ2

a2
= H2

0a
−3(1+w).

▶ For w > −1, this can be solved as

ȧ = H0 a−(1+3w)/2 =⇒ a =

[
3(1 + w)H0t

2

]2/[3(1+w)]

,

where the constant of integration can be fixed by choosing a = 0 at t = 0.
▶ For w = −1, we have a(t) ∝ eH0t.
▶ For matter-dominated universe w = 0, and hence

a ∝ t2/3,

and for radiation-dominated universe w = 1/3, and hence

a ∝ t1/2.

▶ A flat matter-dominated universe is called Einstein-deSitter universe.
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Properties of the flat single-component universe with w > −1
▶ The age of the universe can be obtained in terms of the Hubble parameter as

t =
2

3(1 + w)
H−1(t).

▶ The age of the universe can also be related to the density as

t =
1

H0

2a3(1+w)/2

3(1 + w)
=

1

H0

2

3(1 + w)

(
ρ0
ρ

)1/2

=
2

3(1 + w)

(
3

8πGρ0

)1/2(
ρ0
ρ

)1/2

,

which leads to
ρ(t) =

1

6(1 + w)2πGt2
.

Interestingly ρ ∝ t−2, independent of w.
▶ The acceleration is given by

ä
a
= −4πG

3
(1 + 3w)ρ = −H2

0

2
(1 + 3w)

ρ

ρ0
= −H2

0

2
(1 + 3w)a−3(1+w).

▶ The acceleration is negative for matter and radiation, the universe decelerates when filled with normal matter.
▶ The deceleration parameter is given by

q(t) = − ä a
ȧ2

= − ä
a
a2

ȧ2
=

H2
0

2
(1 + 3w)a−3(1+w) × 1

H2
0

a3(1+w) =
1 + 3w

2
.

This is independent of t and is > 0 for w > −1/3. Thus the universe can accelerate only when w < −1/3.
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Matter-dominated Universe

▶ The next simple solution is for a matter-dominated universe (w = 0), but with k ̸= 0.
▶ Then

H2 = H2
0

[
Ω0

a3
+

Ωk,0

a2

]
= H2

0

[
Ω0

a3
+

1− Ω0

a2

]
.

▶ Then, the equation to be solved will be

ȧ2 =
H2

0Ω0

a
+ H2

0Ωk,0 =⇒ 1

2
ȧ2 − H2

0Ω0

2a
=

H2
0Ωk,0

2
.

▶ This is like the energy equation for a particle moving in the r−2 gravitational field. The quantity H2
0Ωk,0/2 plays the

role of the total conserved energy.
▶ When Ωk,0 = 1−Ω0 > 0, the motion is unbounded. Hence the universe will expand forever when Ω0 < 1 (i.e., there

is not enough matter to halt the expansion).
▶ The opposite will happen for Ω0 > 1 where it will expand followed by a contraction phase. Too much matter makes

the universe recollapse.
▶ The flat universe corresponds to the case when the particle moves with the escape velocity, i.e., the universe will keep

on expanding asymptotically.
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Evolution in matter-dominated models
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▶ We have already found the solution for Ω0 = 1
(Einstein-deSitter universe) which is a ∝ t2/3.

▶ The solution to the equation for Ω0 > 1 (closed) is

a =
Ω0

2(Ω0 − 1)
(1− cosΘ) ,

t =
Ω0

2H0(Ω0 − 1)3/2
(Θ− sinΘ) .

▶ The solution for Ω0 < 1 (open) is

a =
Ω0

2(1− Ω0)
(coshΘ− 1) ,

t =
Ω0

2H0(1− Ω0)3/2
(sinhΘ−Θ) .

▶ For a closed universe, when Θ = 2π, we have
H0t = πΩ0/(Ω0 − 1)3/2, a = 0, i.e., the universe recollapses
to singularity. In the case of an open universe, a increases
indefinitely.
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Matter-dominated static universe

▶ Einstein initially believed that the universe was static. He tried to obtain the solution using the metric

ds2 = dt2 − R2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
,

where R now is a constant. The Einstein tensor for this metric is clearly

G0
0 = 3

k
R2

, G1
1 = G2

2 = G3
3 =

k
R2

.

▶ Now if we assume the universe to be filled with matter, then T00 = ρ, T11 = T22 = T33 = −P = 0 and hence the
Einstein equation becomes

3
k
R2

= 8πGρ,
k
R2

= 0.

▶ Clearly no sensible solution exists for this spacetime, and hence there is no static homogeneous isotropic model filled
with non-relativistic matter.
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Cosmological constant

▶ To find the solution, Einstein realised that one can always add a constant to the Einstein tensor and still
satisfy the Bianchi identities (that was the motivation for the form of Gik in the first place).

▶ Hence he modified his equations to

Rik −
1

2
gikR− Λgik = 8πGTik,

where Λ is a constant, known as the cosmological constant.
▶ Then we get the solutions in the form

3
k
R2

− Λ = 8πGρ,
k
R2

− Λ = 0.

▶ The second equation gives Λ = k/R2, which when put in the first, we get 2k/R2 = 8πGρ. Since ρ > 0, we must have
k = +1, i.e., a closed universe. This also implies that one requires Λ > 0.

▶ The solution for the scale factor can be written as

R =

√
k
Λ

=

√
k

4πGρ
.

▶ The static model of Einstein was abandoned after Hubble’s observations. Hence the requirement for Λ went away.
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Equation of state of Λ

▶ We can write the modified Einstein equation as

Rik −
1

2
gikR = 8πG

(
Tik +

Λ

8πG
gik

)
.

▶ In this manner Λ is interpreted as a source of gravity. Even when no matter is present Tik = 0, we have some
contribution to the gravitational energy, which is called the vacuum energy.

▶ The corresponding components of the stress-energy tensor for Λ would be

Ti j =
Λ

8πG
δij = diag

(
Λ

8πG
,

Λ

8πG
,

Λ

8πG
,

Λ

8πG

)
giving

ρΛ =
Λ

8πG
, PΛ = − Λ

8πG
.

▶ So this source has a equation of state wΛ = −1. The corresponding density ρΛ does not evolve with time.
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Matter and cosmological constant
▶ However, present day observations show that the universe is flat and contains a matter component Ωm,0

and a cosmological constant ΩΛ,0 = 1− Ωm,0. In that case

H2(a) = H2
0

[
Ωm,0

a3
+ (1− Ωm,0)

]
=⇒ ȧ2 =

H2
0

a

[
Ωm,0 + (1− Ωm,0)a

3] .
▶ So the solution is

H0t =
∫

da
√
a√

Ωm,0 + (1− Ωm,0)a3
. =

1√
Ωm,0

∫
da

√
a√

1 + Ka3
,

where K = (1− Ωm,0)/Ωm,0.
▶ The solution is

a(t) =
(

Ωm,0

1− Ωm,0

)1/3 [
sinh

(
3

2

√
1− Ωm,0 H0t

)]2/3
.

▶ When t → 0, we get a ∝ t2/3, while at late times a ∝ e
√

1−Ωm,0 H0t.
▶ The acceleration is

ä = −4πG
3

a
(
ρm,0a

−3 + ρΛ + 3PΛ
)
= −H2

0

2
a
(
Ωm,0a

−3 − 2ΩΛ,0

)
.

▶ Thus the universe decelerates for small a and starts accelerating for

a >

(
Ωm,0

2ΩΛ,0

)1/3

=

[
Ωm,0

2(1− Ωm,0)

]1/3
.
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Non-flat models with cosmological constant

▶ Consider a universe with matter Ωm,0 and a cosmological constant ΩΛ,0, but we allow for non-flat
models so that Ωk,0 = 1− Ωm,0 − ΩΛ,0.

▶ In that case,

H2(a) = H2
0

(
Ωm,0

a3
+ΩΛ,0 +

Ωk,0

a2

)
=⇒ 1

2

ȧ2

H2
0

+

(
−Ωm,0

2a
− ΩΛ,0a2

2

)
=

Ωk,0

2
.

▶ This resembles the motion in a potential

V(a) = −Ωm,0

2a
− ΩΛ,0a2

2

with constant energy E = Ωk,0/2. The time coordinate is scaled to H0t.
▶ The potential is always negative with V(a) → −∞ for a → 0,∞. It has a maximum at

a = amax =

(
Ωm,0

2ΩΛ,0

)1/3

=⇒ Vmax = − 3

25/3
Ω

2/3
m,0 Ω

1/3
Λ,0.

▶ The energy E is positive for open models Ωk,0 > 0, and negative for closed models Ωk,0 < 0.
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Dynamics of the non-flat models with Λ

V(a)

a

amax

▶ Let us consider models which start at a = 0 at t = 0.
▶ When E > 0 (open models), the scale factor will expand to ∞.
▶ When E < 0 (closed models), but E > Vmax, the scale factor

will still expand to ∞.
▶ In these expanding models, the universe decelerates for

a < amax and accelerates afterwards.
▶ On the other hand, when E < Vmax, the scale factor reaches a

maximum and then recollapses to 0.
▶ When E = Vmax, the universe expands and approaches a static

state at a = amax. This is the Einstein’s static universe.
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