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Physical and comoving distances

» Since we will be talking about observations, let us write the metric putting back the quantity c

ds®> = Ad? — R%(t) [dx2 + S7(x)(d#® +sin® @ dqb2)]

dr
= 2df — R*(D) { —z T ?(d6? 4 sin® 0 d¢?)

» The physical or proper distance to a point with coordinate ris obtained by putting dt = df = d¢ =0

dp = R(t = R(1)S; (1)

/ V31— kr2

» The comoving distance to the same point is defined as the distance if it was measured at the present epoch and is
given by

dc = ROX = ROSk_l(r).

» Clearly, the proper distance between two fundamental observers increases oc R(t), while the comoving distance
remains constant:
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The coordinate systems

° °
° °
) ) o o
Physical/proper coordinates . . °
o o
° °
° °
° °
° °
) ) o o
Comoving coordinates ° ° °
o o
° °
° °
) o o °o o e o
Comoving coordinates ° ° °



Emission and receiving of electromagnetic wave

NCRATIFR

» The propagation of photons (radially) is governed by the equation
0 =ds* = Adf* — R*(H)dx* = dy/dt = —c/R(¢)

where the negative sign implies “incoming” photons.

» Consider a wavecrest which is emitted at ¢ from some distant galaxy situated at coordinates x. This signal is received
by an observer on earth at the present epoch t.

t t+ ot fo to + 6ty
—

» The next wavecrest is emitted at t + dt and is received at ty + Jto.

» The comoving distance travelled by light between the two points is just the comoving distance to the galaxy and is

given by
to dt/ to+dty dt/
Rox = R c/ — = Roc/ —
TR R®) wo R(E)



N

Cosmological time dilation N

» The integral can be broken into three parts using

t46t to+5to to+5to H3t 4y to+dto gy
A A A
Now, if R does not change over the time-scales of 6t and dty, we can take it out of the integral and hence
Bt _dn
R(t) Ry’

> We have assumed that R(t) does not change significantly over the interval(s) 6t i.e., R/R &t < 1 (this implies age of
the Universe ~ R/R > §t, the time-period of the wave).

» Since Ry > R(f), we have 0ty > dt.
» This is simply the cosmological time dilation. Events observed take longer (“stretched”) than they happen in their

rest frame.



Cosmological redshift
» We have §t/R(t) = dto/Ro. Nema eTiF
» Now, the frequency of the light wave is simply v = 1/§t. We thus obtain

vo _R(H) _ X _ Ry

v Ry A R
» The redshift is defined as
PP e S
=== .
Thus the redshift is related to the scale factors by the relation
1+z= &.

R(2)
» This implies that if we can measure the redshift of a light signal originating from a distant galaxy, we can estimate
the size of the Universe (relative to today) when the signal originated.
» Measurement of z along with the knowledge of the function R(t)/Ro, allows us to estimate t when the light was
emitted.
» Similarly, knowledge of t and R(£) allows us to calculate the distance
o d¢

dp = R(t)x = cR(t)/t Gk

» Often zis used as a proxy for time and also distance. Present epoch corresponds to z = 0.
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Example of redshifts: quasars (Lyman-a emission line)
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Note that according to this interpretation, the redshift is simply a consequence of expansion of the spacetime.
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Hubble-Lemaitre law Bﬂ

> If we assume that a fundamental observer (galaxy) is at a coordinate distance x;, its proper distance is NGRASTIER
dp(t) = R(t)x.
» The velocity with which it is moving away is
ve = R(H)x = H(t)dp, H(t) = R/R.

H(?) is the Hubble function/parameter.

» If the galaxy is close to us, then the time of measurement corresponds to t =~ to and hence we recover Hubble’s law in
its traditional form vp = Hodp.

» Note that [H] = 1/t. Hence H™'(#) defines a time-scale.

» The significance of this time-scale can be understood if we assume that the Universe expands as a power-law

R(t) = Ro (—t>a = H(t) =

to

«

«
—, Ho=—.
) 0 to

t
» Hence H(t) approximately measures the age of the Universe at the epoch ¢ Its present value is written as
Ho = 100 hkm s™* Mpc™*,
with h &~ 0.7 (measured). The corresponding time-scale is
th ~ 1010h71yrs,

which is roughly the age of the universe.
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Comoving distance in terms of z
» Since zis directly observable, it is convenient if all quantities are expressed as functions of z

> Let us first express R(t) in terms of z This is easy as we have

Ro
R(t) = .
) 1+z
» Next, we need to express x in terms of z Since dy/dt = —c/R(£) for photons coming towards us, we have

X , t dt/
x= [ dx :—C/ o
/0 0 R(¥)

» We already know to express R(t) in terms of z. We only need to express dt in terms of dz. We can do this as

Ro Ro Ro R
dz=d(1+2)=d <?> :—— dR= e Rdt——?—dt— —(1+4 z) H(z) dt.

» Hence the comoving distance is

todf z dZ 1+ 7 z d7
dc = R :—CR/ :+CR/ X :c/ .
cT X °J,, R(®) *Jo A+ 2)HZ) " R o H(Z)

» Often, ¢/H(z) is called the Hubble distance, then the comoving distance is just the integral of the Hubble distance.




Proper distance in terms of z
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» The proper distance is related to the redshift through the relation

_R(p) < 2 dZ
dp(Z) = Todc(z) = 1+Z/0 H(Z’)'

Clearly, this is not the simple Hubble-Lemaitre law.

» In fact, Hubble derived his law of expanding universe as z = Hodp/c but his observations were limited to galaxies
with redshifts z < 0.003.

» When z < 1, we can assume that H(z) is almost constant and is equal to its present value Ho:

c ., cz
d, ~ — dz = —.
R -



Acceleration of the expansion
» To understand how the Hubble-Lemaitre law is modified for slightly higher values of z let us expand in a
power series and retain the next order terms.

P Let us start with the expansion around t = ty

. 1 .
R(t) & Ro + (t= to)Ro + 5 (t = to)°Ro + ...
RQ

R2
tUR

R 1 RR
=Ro+(t—t) & Ro+§(t7to)25 Ro+...

to

to
1
=Ry {1 + (t—to)Ho — E(t* to)’qoHa + . . ] )
where qo = —Ro Ro/kg.

> Note that the acceleration of the expansion is measured by the quantity R. It is customary to define the
deceleration parameter as

(l’) = _B = _,Ri
=" = "k
» Also note that the derivative of H(t) can be expressed in terms of g as
: R R 2 2 2
H(t) = 5 = —q(O)H (1) = H () = —=H ()[1 + q(1)].

R R

NCRATIFR
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Series expansions in z

» Often it is useful to make expansions in powers of z
» The derivation of the series expansion of dp(z) is obtained from the following sequence:
1. Using the series of R(t), obtain the expansion for z:

Ro
2(t) = m

toft:H(Tl {zf (1+q50>22+...:|.

3. Finally, expand 1/H in terms of t and then use the above expansion to get
1 1 H 1 . —1
= — - L=—-Q H,
0D " o H‘g,“ to) + me ~ (Lt et 2+
» Putting this in the expression for dp(z), we obtain the result
c z d7 c 1 9
dp(2) = = — |z—=(3+ zZ+....
&= | 5y T 53+ )
» The lowest order term is the Hubble law. However, there are higher order corrections for larger values of z which
depend on the derivatives of H.
» The comoving distance as a series expansion in z is

de(z) = c/oz :(; = )1+ = = {z— %(1+qo)z2+..} .

,1:Hg(tgft)Jr(toft)QHg<1+q5°>+m.

2. Invert it to obtain




Look-back time and age

» The look-back time is given by

» The age is given by
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Angular diameter distance N
» Unfortunately, there is no direct way of measuring the proper or comoving distance to an object. NeRA-TiER
» In cosmology, the distance to an object far away can be measured via observations in more than one ways.
» The first one is to measure the angular size of the object, and if we somehow know its intrinsic size (say it is a
“standard ruler”), we can estimate its distance. This is known as the angular diameter distance.
> Assuming the object has a proper size D and subtends an angle §6, then its distance in Euclidean geometry would be
da = D/56. This is the operational definition of the angular diameter distance.
» The proper transverse size D of a object subtending an angle §6 at distance x is obtained by putting
dt=dr=d¢ =0: D
D = R()S:(x)30,

where tis the time at which the photon was emitted from .

» The angular diameter distance is thus 50 da
D
da(t) = 0= R(8)Sk(x)-
» |n terms of z this becomes
da(z) = RSO L/Z dz
A NP Ro J, H(Z)

» Note that for flat universe (k = 0)

is independent of Ro.
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Luminosity distance
» A second way of defining distance would be to use the flux-luminosity relation.

» In Euclidean geometry, the luminosity L (of an isotropic source) and the observed flux F are related by

This is the operational definition of the luminosity distance d;.
» For simplicity, let us assume the emitter is monochromatic.

» The luminosity is the energy emitted per unit time

L

ﬁ- o 5N»y hpl/

st 8t
where §N, is number of photons emitted.

» The flux is defined as the energy received per unit time per unit area

6N—y hpl/o

F 0A Oty ’

where we have assumed that frequency and the time interval may change because of expansion.

» In the Euclidean case, vy = v, 0ty = dtand A = 47 d?, hence we recover the familiar relation.
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» Now, there are three effects which have to be accounted for NCRAXTIFR
1. The photons emitted from a source at time t at distance x, while reaching us, would be distributed over a sphere of surface area

SA = ATR3P = 4TRIS (X)-

2. The frequency of the photons would be shifted to v — vg = v R(t)/Ro = v/(1 + 2).
3. The arrival time interval would be changed to 6ty = 8t Ry /R(t) = &t (1 + z).

Luminosity distance (contd)

» So we have
F— (SNW hpl/() _ 6N»y [hpl//(]. —+ Z)} _ L
 JASty ATRESE(x) [6t(1+2)]  4mR3SE(x)(1 + 2)2°
» This implies that the luminosity distance will be given by

di(2) = RoSi(x)(1 + 2).

» Note that in general d;(£) # da(t) # dp(t) # dc(t). In fact di(2) = da(2) (1 + 2)°.
» In modern days, the Hubble-Lemaitre law is represented in terms of d.(z). Let us first expand
sin (\ﬂ‘x) k ¢ Hot 1
S = Loy = - 21 0@ + ...
(00 = o = = S [ 2| - o) +
» Then
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Distance modulus N7
» In optical, UV, NIR bands, luminosities and fluxes are measured using the magnitude system. NCRASTIER
» The apparent magnitude of an object is defined in terms of the observed flux

m= —2.5log,,(F/Fo)

where Fy is a constant chosen based on some pre-determined convention.

» For example, one can choose Vega to represent magnitude zero so that Fg = Fga. In recent times, other conventions
are used too (e.g., AB-magnitude).

» Similarly, the absolute magnitude is defined in terms of the luminosity by a similar relation

M= —25log,,(L/L1).
» Clearly,
M= —2.5log,, (4nd; F/L1) = —2.51og,, (F/Fo) — 2.51og,, (4md}Fo/L1) = m — 2.5log, (4nd; Fo/L1)

» The constant is chosen such that the absolute magnitude equals the apparent magnitude the object would have if it
were at a standard distance (10 parsec) away from the observer. Hence L; = 47 (10pc)Fy and

M= m—5log,, (d./10pc).

> A related quantity is
m— M = 5log,, (d./10pc)

which is known as the distance modulus. It is a measure of the luminosity distance to the source.
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K-correction Bﬂ

» In general, we observe only in a limited frequency range [v1, v2]. In Euclidean space, the bandpass flux is NeRa <TiER

1 va
Fgp = —— dv L, (v).
BP 471_0,% /D v L, (v)

1
» We can define mgp = —2.51og;,(Fsp/Fo,8r) and Mep = —2.510g;, [f:f dv LV(I/)/LLBP],With
L1,p = 4m(10pc)®Fo pp to obtain the standard distance modulus relation mgp — Mgp = 5log;, (di/10pc).
» In an expanding universe, redshift implies that the detected light was actually emitted at higher frequencies

1 v2(1+2)

Fgp dv L, (v).

47“{% vy (1+2)
» Assuming the same relations for mgp and Mgp as in the Euclidean case, we can show that
mpp — MBP = 510g10 (dL/10pc) =+ K(Z)7
where the extra correction, known as K-correction, is

fV2(1+Z) dv L, (v)
K(z) = —2.51 JnQtg 77 VA
(Z) 0810 fVVlQ dv LV(V)
» This correction is important while comparing properties of galaxies at different redshifts.
» For a source with L, oc ¥~<, we can show that K(z) = 2.5(ac — 1) log;(1 + z). Thus sources with a =~ 1 (say,
quasars) have negligible correction.

:12 dv L[v(1+ 2)]
f:f dv L, (v)

= —2.5log,,(1 + z) — 2.51og,, |:




