Cosmology Lecture 1

Overview of the course

Tirthankar Roy Choudhury

National Centre for Radio Astrophysics Tata Institute of Fundamental Research

Pune

- Course consists of 21 lectures, three lectures per week
- Lectures start from 22 February, end on 9 April (seven weeks). If we miss any lectures in between, there will be extra make-up lectures so as to finish by 9 April.
- The Final Examination will be on 19 April (tentative). The mode (online/offline/hybrid) will be decided later, based on the restrictions arising from the pandemic.
- Attendance in the lectures is not compulsory. However, if you attend the lectures, please try to be punctual.
- Discussion sessions: not planned for the moment. In case students feel the need, please let me know. These sessions have to be held beyond the regular lecture hours (e.g., evenings from 17:00).

Evaluation

- ► The details of the *Final Examination* will be decided later. At the minimum, you will be allowed to consult the lecture slides and any notes you have made.
- In addition, there will be two Assignments.
- The evaluation procedure for the course is as follows: your final average score will be computed giving 50% weightage to the Final Examination and 50% to the Assignments.
- The Assignments would be distributed to you during Lecture 9 and Lecture 18, respectively. You will get about seven days to return them back.

Cosmology

- Refers to the study of the Universe as a whole.
- Possibly one of the oldest branches of science.
- ► Very different from other branches of physics: *no controlled experiments*

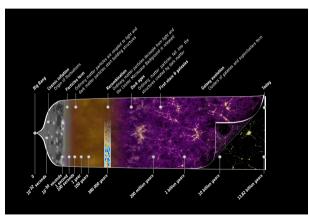
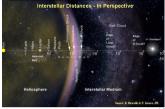


Image from Planck (ESA) website

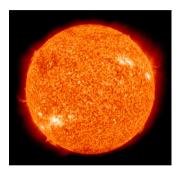
Size and distance scales

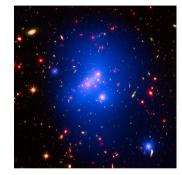

Solar system 1 AU $\sim 10^8~{\rm km}$

Distant galaxies $\sim 10 \; \rm Mpc$

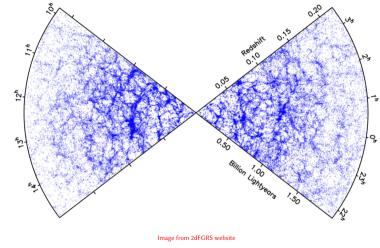
Images: Wikipedia / NASA website

Nearby stars \sim parsec (pc) = 3.1×10^{13} km





Mass scales


Galaxy cluster $\sim 10^{15} M_{\odot}$

Star $M_\odot = 2 imes 10^{33}$ gm

Galaxy $\sim 10^9 - 10^{11} M_{\odot}$ Images: Wikipedia

Large-scale structure

1 Lightyear = 0.3 pc

Galaxies are not uniformly or randomly distributed, they form the "large-scale structure"

Tirthankar Roy Choudhury

Cosmic archeology

8 minutes ago

 ~ 10 years ago

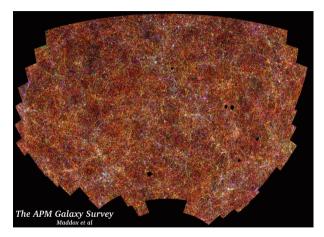
 $\sim 10^4~{\rm years}$ ago

 \sim billion years ago

Tirthankar Roy Choudhury

Nearby stars

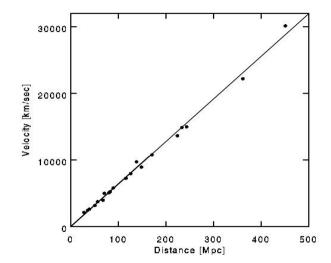
()



Galactic centre

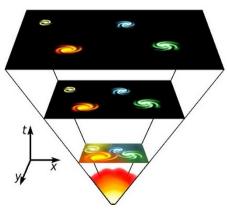
Distant galaxies

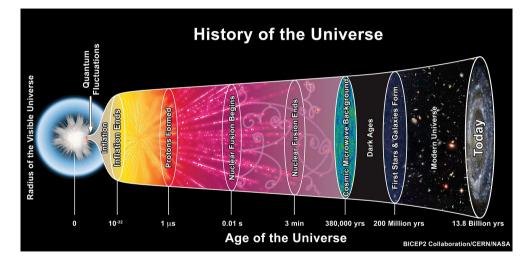
Homogeneity and isotropy



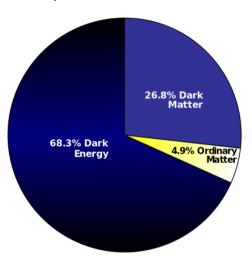
At large scales, the Universe is statistically homogeneous and isotropic

Tirthankar Roy Choudhury

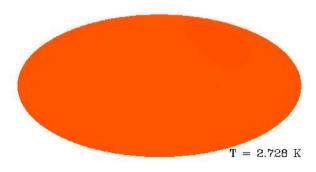

Expanding universe: Hubble-Lemaitre law


Hot Big Bang

- ► At early times, the galaxies were closer to each other.
- ► The Universe began from a "point".
- ► Smaller Universe must have been hotter


Important milestones

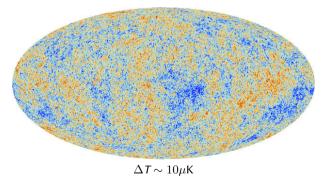
Constituents of the Universe


Expansion rate \iff Constituents

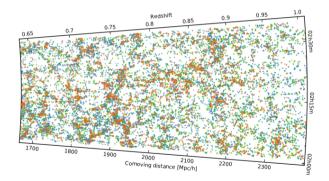
The "standard model" (or "concordance model") of cosmology: ΛCDM

Tirthankar Roy Choudhury

Early universe: homogeneous


- Matter in the universe was extremely "smooth".
- We know this from the observations of Cosmic Microwave Background (CMB) radiation, the light "left over" from the Big Bang.
- The CMB reflects the state of our Universe about 400,000 years after the Big Bang (for reference, the age of the Universe today is approximately 14 billion years).

CMB fluctuations


- ▶ We also observe very small (about one part in 100,000) fluctuations in the CMB.
- ► These would have arisen because of some quantum effects at early times.

Large-scale structure formation

- Observations of galaxies around us show "structures".
- Can see filaments, voids \implies the "cosmic web".
- ► How did the structures form from the small fluctuations?

Courtesy: VIPERS

Structure of the Course

Smooth Universe Physics & mathematics of relativistic cosmology Fundamentals of the "Standard Model of cosmology"

Inhomogeneous Universe Structure formation in the Standard Model using linear perturbation theory Simplified nonlinear models

Smooth Universe

- ► The expanding Universe
- ► Relativistic cosmology: FLRW metric
- FLRW kinematics (light propagation, distances)
- FLRW dynamics (Friedmann equations & solutions, standard model components, observational evidence)
- ► Inflation and scalar fields
- Thermal history of the Universe (evolution in equilibrium, decoupling of species, dark matter, Big Bang nucleosynthesis, recombination)

- Relativistic linear perturbation theory (scale-dependent dynamics, perturbations in radiation & dark matter, transfer function)
- Non-relativistic fluid formulation (linear & quasi-linear evolution of dark matter, linear evolution of baryons)
- ► Non-linear growth: Zel'dovich approximation, spherical collapse
- Statistical treatment of linear inhomogeneities (Gaussian random fields, power spectrum)
- Statistics of non-linear objects (redshift space distortions, halo mass function, galaxy clustering, galaxy formation)

Suggested references

- ► T. Padmanabhan, Theoretical Astrophysics, Volume III: Galaxies and Cosmology, Cambridge University Press
- ► J. A. Peacock, Cosmological Physics, Cambridge University Press
- ► H. Mo, F. van den Bosch & S. White, Galaxy Formation and Evolution, Cambridge University Press