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e The questions in this assignment are based on standard topics you would have covered till now.
e You may look up textbooks and/or consult friends for solving the problems, but make sure you understand the solutions.

e You need not submit this assignment. However, if you find any of these questions nontrivial/difficult, please let me
know so that the rest of the course can be designed appropriately.

1. General Theory of Relativity: Calculate the Christoffel symbols, the components of the Ricci tensor R;; and the
Einstein tensor G, for the metric
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2. Thermodynamics: Starting with the second law of thermodynamics
T dS =dE + PdV — pdN,
show that
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3. Statistical Mechanics: Consider the (relativistic) phase space distribution for some species A:
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E(p) = \/p*+m3.

The quantity g4 is the spin-degenracy factor for the species, 4 is the chemical potential and T4 is the temperature.
The upper sign corresponds to fermions and the lower one to bosons. For simplicity, we use units where h = c = kg = 1.
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Derive expressions for the number density n4, energy density pa, pressure P4, and entropy density s4 = (pa + P4 —
napa)/Ta in the ultra-relativistic limit T4 > ma, Ea > ma and in the non-relativistic limit T4 < m4.

4. Fluids: The evolution of the phase space distribution f(7,p,t) of a collection of microscopic particles is given by the
Boltzmann equation
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where C[f] denotes the change in the distribution function arising from collisions between the particles. Take moments
of this equation and derive the continuity and Euler equations for fluids.

5. Statistics: The two point correlation function of a density field is defined as
(x—a) = (b(x) d(x)),
where () is the density contrast and (- --) denotes the ensemble average. The Fourier transform of §(z) is defined as
5(k) = / &z §(z) e RT.

Show that
(5(k) 5" (k) = (27)° dp(k — k') / P £(z) e R,



6. Radiation: Consider the radiative transfer equation
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Show that the formal solution of the above can be written as
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Assume I, = I,(0) at s = so.

7. Classical Mechanics: Consider the evolution of a spherical shell of radius R which encloses a mass M. The equation
of motion is
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Show that the first integral of motion is given by
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where F is the integration constant.

Solve the above equation and plot the function R(t) for different values of E. You can choose the initial condition to
be R —0ast—0.



