

Extra-Galactic Astronomy - I Cosmology

IUCAA / NCRA Graduate School 2016-17

Aseem Paranjape

Part I - Lecture 10

Big Bang Nucleosynthesis

- Production mechanism of light nuclei
- Predictions
- Observations
- Historical notes

Equilibrium expectations

Consider a non-relativistic nuclear species *A*(*Z*) with mass *A*, charge *Z* in kinetic equilibrium:

$$n_A = g_A \left(\frac{m_A T}{2\pi}\right)^{3/2} \exp\left(\frac{\mu_A - m_A}{T}\right)$$

If reactions producing nucleus A out of Z protons and A-Z neutrons are fast enough, then chemical equilibrium holds:

 $\mu_A = Z\mu_p + (A - z)\,\mu_n$

Eliminate chemical potentials and define binding energy B_A :

$$B_A \equiv Zm_p + (A - Z)m_n - m_A$$

$$n_A = g_A A^{3/2} 2^{-A} \left(\frac{2\pi}{m_N T}\right)^{3(A-1)/2} n_p^Z n_n^{A-Z} \exp\left(B_A/T\right)$$

where $m_N \approx m_p \approx m_n \approx m_A/A$.

Defining
$$n_N = n_n + n_p + \sum A n_A$$

and $X_A \equiv A n_A / n_N$

$$X_{A} = g_{A} \zeta(3)^{A-1} \pi^{(1-A)/2} 2^{(3A-5)/2} A^{5/2}$$
$$\times \eta^{A-1} (T/m_{N})^{3(A-1)/2}$$
$$\times X_{p}^{Z} X_{n}^{A-Z} \exp(B_{A}/T)$$

where

$$\eta \equiv \frac{n_N}{n_\gamma} = 2.68 \times 10^{-8} \left(\Omega_B h^2\right)$$

Binding energies

Neutron-to-proton ratio

After nucleosynthesis, essentially all neutrons incorporated into Helium. Hence initial ratio of neutrons to protons will help determine final abundances.

At *T* >> 1Mev, weak interactions maintain balance between neutrons & protons:

$$n \longleftrightarrow p + e^{-} + v^{-}$$
$$v + n \longleftrightarrow p + e^{-}$$
$$e^{+} + n \longleftrightarrow p + v^{-}$$

with rates $\Gamma / H \approx 0.8 (T / 1 \text{MeV})^3$

Ignoring chemical potentials of electrons and electron neutrinos, in chemical equilibrium we have:

$$n/p \equiv n_n/n_p = X_n/X_p = \exp\left(-Q/T\right)$$

where $Q = m_n - m_p = 1.293$ MeV. So for T >> 1 Mev, $X_n \simeq X_p \simeq 0.5$

Neutron-to-proton ratio

Just before $T \sim 1$ Mev, bulk of neutrinos decouple from plasma.

Soon after, e^+e^- pairs annihilate and disappear (transferring entropy to photons). Reactions converting neutrons to protons and vice-versa freeze-out, leaving a neutron-to-proton ratio

 $(n/p)_{freeze-out} = exp(-Q/T_F) \approx 1/6$

Thereafter, occasional weak interactions occur (eventually dominated by free neutron decay), reducing the ratio from $\sim 1/6$ to $\sim 1/7$.

At this time, the other nuclear species are still in equilibrium, with tiny abundances.

Nucleosynthesis

In equilibrium we have

$$X_{A} = g_{A} \zeta(3)^{A-1} \pi^{(1-A)/2} 2^{(3A-5)/2} A^{5/2}$$
$$\times \eta^{A-1} (T/m_{N})^{3(A-1)/2}$$
$$\times X_{p}^{Z} X_{n}^{A-Z} \exp(B_{A}/T)$$

so initially (around T \gg 1MeV) we have $X_A \sim \eta^{A-1} \ll 1$, and we expect $X_A \sim 1$ around temperature T_{Nuc}

$$T_{\rm Nuc} \simeq \frac{B_A/(A-1)}{\ln(\eta^{-1}) + 1.5\ln(m_N/T)}$$

Note that these are order 0.1-0.3 Mev for $d, \ldots, {}^{4}He, \ldots {}^{12}C$, despite binding energies per nucleon ~ 1-8 Mev. This is mainly due to smallness of η .

Deuterium bottleneck

If equilibrium were maintained throughout, then ⁴*He* would appear first. However, number densities are too low for anything but 2-body processes to be rapid enough compared to expansion. So the following chain leads to build-up of elements

first :	$p + n \longleftrightarrow d + \gamma$
next :	$d + d \longleftrightarrow {}^{3}H + p$
	$d + d \longleftrightarrow {}^{3}He + n$
next:	$d + {}^{3}H \longleftrightarrow {}^{4}He + n$
	$d + {}^{3}He \leftrightarrow {}^{4}He + p$

First step is fast enough, even well below 0.1Mev, that deuterium abundances are wellapproximated by equilibrium expression $X_d \sim \eta X_p X_n \exp(B_d/T)$. However, smallness of B_d means that deuterons are rare well after equilibrium ⁴He would be abundant, i.e., nucleosynthesis must wait until $T \sim T_d \sim 0.1$ MeV $< T_{4He}$ for ⁴He to be produced.

End of nucleosynthesis

Beyond $T \sim T_d$, ⁴He (the most tightly bound of light elements) is rapidly produced and eats up essentially all free neutrons.

Small amount of ⁷Li is produced by two processes: direct: ${}^{3}H + {}^{4}He \leftrightarrow {}^{7}Li + \gamma$ indirect: ${}^{3}He + {}^{4}He \leftrightarrow {}^{7}Be + \gamma$ $e^{-} + {}^{7}Be \leftrightarrow {}^{7}Li + \nu$ (much later)

Although ¹²C, ¹⁶O, etc. have binding energies larger than ⁴He, production of these is hampered for two reasons: (a) no stable isotopes of mass numbers 5 and 8, (b) significant Coulomb barrier suppression at low temperatures. (In stars, this gap is bridged by the triple-alpha reaction, but number densities are too low for this to occur in the early universe.)

Finally, substantial amounts of *d* and ³*He* are left `unburnt', once their rates (proportional to their relative abundances and to η) become too slow compared to Hubble expansion. Dependence on η means that primordial abundances probe $\Omega_B h^2$.

Predictions

Burles, Nollett, Turner (1999)

Observations: ⁴*He*

Observation of recombination lines in spectra of HII regions allows determination of ⁴*He* mass fraction *Y*, using low-metallicity Blue Compact Dwarf (BCD) galaxies.

Primordial value Y_P inferred from extrapolating measurements of Y and metallicity (e.g., O/H) to zero metallicity.

Many issues involved: effects of collisional excitation, fluorescence reddening; accounting for ⁴He⁺⁺, unseen neutral ⁴He, etc. [See, e.g. Thuan & Izotov (1998) Space Science Reviews, **84**, 83-94]

Current estimates:

 $Y_{\rm P} = 0.2477 \pm 0.0029 \implies \eta = (5.8 \pm 1.8) \times 10^{-10}$

[Peimbert+ (2007) ApJ, 666, 636-646]

Observations: ³*He*

Several local techniques for measuring ³*He*:

- observations of ³He⁺ hyperfine line in galactic HII regions: ³He / H < 1.1 × 10⁻⁵ [Bania, Rood & Balser (2002) Nature, **415**, 54]
- measurements of pre-solar abundances in oldest meteorites, abundance in solar wind (from gas rich meteorites, lunar soil, foil placed on Moon by Apollo astronauts): $[(d + {}^{3}He)/H] \approx (3.6\pm0.6)\times10^{-5}$

Problem is, ³He can be both produced and destroyed in stars. Detailed calculations suggest that amount of ³He ejected into ISM by stars should be small. Allowing for conservative estimates on amount of ³He burned by stars then gives

 $[(d+{}^{3}He)/H]_{\mathsf{P}} \lesssim 8 \times 10^{-5} \Rightarrow \eta > 4 \times 10^{-10}$

Observations: Deuterium

Early techniques: UV absorption studies of local ISM; deuterated molecules (DCO, DHO) in ISM; deuterated molecules in atmosphere of Jupiter; pre-solar abundances from meteorites/solar wind (see previous): broad range $d/H \sim 1-4 \times 10^{-5}$ with varying precision.

Due to low value of *B_d*, deuterium easily destroyed in any astrophysical environment. So all astrophysical observations strictly provide only *lower limit* on primordial abundance. Existence of astrophysical deuterium is amongst strongest evidence supporting hot Big Bang model.

More recently (since late 1990's), from measurements of *d* and *H* absorption lines in QSO spectra (absorption due to high-redshift intergalactic clouds), e.g.: $d/H = (2.78 \pm 0.41) \times 10^{-5}$ [Kirkman+ (2003) ApJS, **149**, 1] $d/H = (2.8 \pm 0.7) \times 10^{-5}$ [Noterdaeme+ (2012) A&A, **542**, L33]

Since absorption occurs in low metallicity systems, expect these to be tracing nearly primordial distribution.

Observations: ⁷*Li*

Early observations of atmospheres of unevolved old stars in Galactic halo gave: $^{7}Li / H = (2-2.4 \pm \sim 0.1) \times 10^{-10}$, lower than the expected 3 × 10⁻¹⁰ for $\Omega_{\rm B}h^{2} = 0.022$.

Since ⁷Li is produced in stars and in interaction of cosmic rays with matter, this lower value might pose a problem to BBN. However, it is also plausible that ⁷Li abundance has been *depleted* by convection in stellar atmospheres (supported by observations of ⁷Li in atmospheres of stars with varying temperatures in same globular cluster).

Understanding this discrepancy is an active field of interest.

Historical notes

Dramatis personae:

- George Gamow, Ralph Alpher, Robert Herman (late 1940's, early 50's): initially wanted to produce *all* elements in BBN
- Fred Hoyle, with Margaret & Geoffrey Burbidge, William Fowler (1950's, 1960's):

stellar nucleosynthesis

[recall Hoyle rejected Lemaître's ideas, preferred continuous creation of hydrogen]

— **P. J. E. Peebles** (1966)

modern theory of primordial nucleosynthesis

- Ya. B. Zel'dovich (1965) related calculations, not known outside Iron Curtain until much later
- R. V. Wagoner, W. A. Fowler & F. Hoyle (1967) detailed calculations, extended to more nuclides and reactions

For a historical account, see The First Three Minutes by Steven Weinberg.