## Cosmology: Assignment 3 IUCAA-NCRA Graduate School January - February 2017

## 10 February 2017 To be returned in the class on 17 February 2017

1. According to the relativistic theory of linear perturbations, the  $^0_0$  component of the Einstein equations (in Fourier space) is

$$3\frac{a'}{a}\phi' + \left(k^2 + 3\frac{{a'}^2}{a^2}\right)\phi = -4\pi G a^2 \bar{\rho}\delta,$$

while the  $\frac{\alpha}{\alpha}$  component is

$$\phi'' + 3\frac{a'}{a}\phi' + 2\frac{a''}{a}\phi - \frac{{a'}^2}{a^2}\phi = 4\pi G a^2 p.$$

Here 's denote derivatives with respect to the conformal time  $\eta$ , and  $\phi$  is the gravitational potential. Other quantities have their usual meaning as discussed in the class. We have assumed the metric to be spatially flat.

Assume there exists only one component of matter given by the equation of state  $P = w\rho$  ( $w \neq -1$ ). The equation holds for the unperturbed as well as the perturbed quantities.

- (a) Use the solutions to the background universe to find the quantities a'/a and a''/a in terms of  $\eta$ .
- (b) Show that  $\phi$  satisfies the second order differential equation

$$\phi'' + \frac{6(1+w)}{(1+3w)\eta}\phi' + wk^2\phi = 0.$$

(c) Find the solution  $\phi(\eta)$  to the above equation for large scales  $k\eta \to 0$ .

[4+5+3]

2. The equations for a non-relativistic fluid are given by

$$\begin{array}{ll} \text{Continuity equation:} & \dot{\rho}(t, \boldsymbol{r}) + \boldsymbol{\nabla}_{r} \cdot [\rho(t, \boldsymbol{r}) \; \boldsymbol{U}(t, \boldsymbol{r})] = 0, \\ \text{Euler equation:} & \dot{\boldsymbol{U}}(t, \boldsymbol{r}) + [\boldsymbol{U}(t, \boldsymbol{r}) \cdot \boldsymbol{\nabla}_{r}] \boldsymbol{U}(t, \boldsymbol{r}) = -\boldsymbol{\nabla}_{r} \Phi(t, \boldsymbol{r}) - \frac{\boldsymbol{\nabla}_{r} P(t, \boldsymbol{r})}{\rho(t, \boldsymbol{r})} \\ \text{Poisson equation:} & \boldsymbol{\nabla}_{r}^{2} \Phi(t, \boldsymbol{r}) = 4\pi G \rho(t, \boldsymbol{r}), \end{array}$$

where the overdot represents partial derivative  $\partial/\partial t$  with respect to the time t and  $\nabla_r$  is the spatial gradient operator with respect to the proper coordinates  $\mathbf{r}$ . The fluid density and pressure are denoted by  $\rho(t, \mathbf{r})$  and  $P(t, \mathbf{r})$ , respectively, while the proper velocity of the fluid is  $\mathbf{U}(t, \mathbf{r}) \equiv \mathrm{d}\mathbf{r}/\mathrm{d}t$ . The quantity  $\Phi(t, \mathbf{r})$  is the gravitational potential.

One can write the equations in terms of the comoving coordinate  $\boldsymbol{x}$ 

$$\boldsymbol{r} = a(t)\boldsymbol{x},$$

and the perturbed quantities

$$\begin{array}{ll} \text{Density contrast} & \delta(t, \boldsymbol{x}) = \frac{\rho(t, \boldsymbol{x})}{\bar{\rho}(t)} - 1,\\ \text{Peculiar velocity field} & \boldsymbol{v}(t, \boldsymbol{x}) \equiv a(t) \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{U}(t, \boldsymbol{x}) - \frac{\dot{a}}{a}\boldsymbol{r},\\ \text{Perturbed pressure} & p(t, \boldsymbol{x}) = P(t, \boldsymbol{x}) - \bar{P}(t),\\ \text{Perturbed gravitational field} & \phi(t, \boldsymbol{x}) = \Phi(t, \boldsymbol{x}) - \bar{\Phi}(t, \boldsymbol{x}). \end{array}$$

The symbols with bars denote the average values of the corresponding quantities, which are independent of the spatial coordinates except  $\bar{\Phi}$ , which satisfies the equation for the smooth universe

$$\nabla_r^2 \Phi = 4\pi G \bar{\rho}$$

- (a) Use the above to first separate out the "unperturbed" part of the equations and write them down.
- (b) Show the perturbed parts of the fluid equations are given by

$$\begin{split} \dot{\delta} &+ \frac{1}{a} \, \boldsymbol{\nabla} \cdot \left[ (1 + \delta) \, \boldsymbol{v} \right] &= 0, \\ \dot{\boldsymbol{v}} &+ \frac{\dot{a}}{a} \, \boldsymbol{v} + \frac{1}{a} \, (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v} &= -\frac{1}{a} \, \boldsymbol{\nabla} \phi - \frac{\boldsymbol{\nabla} p}{a \bar{\rho} (1 + \delta)}, \\ \boldsymbol{\nabla}^2 \phi &= 4 \pi G \bar{\rho} a^2 \delta, \end{split}$$

where we are using the convention

$$\boldsymbol{
abla}\equiv \boldsymbol{
abla}_x.$$

(c) Show that for a pressureless fluid (p = 0), the density contrast, under the *linear approximation*, satisfies the equation

$$\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} = 4\pi G\bar{\rho}\delta.$$
[5+8+5]

2