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To be returned to the tutor by 10 September 2011

• The deadline for the submission of the solutions of this assignment will be strictly enforced. No marks will be given if
the assignment is not returned in time.

• You are free to discuss the solutions with friends, seniors and consult any books. However, you should understand and
be clear about every step in the answers. Marks may be reduced if you have not understood what you have written
even though the answer is correct.

• Let me or your tutor know if you find anything to be unclear or if you think that something is wrong in any of the
questions.

1. Isotropic radiation field: Consider a radiation field characterized by specific intensity Iν . What happens to the
net radiation flux when the radiation field is isotropic? How is the pressure related to the energy density when the
radiation field is isotropic?

[1 + 1]

2. Blackbody radiation: (i) Show that the energy density per frequency range of blackbody radiation is given by

uν =
8πhν3

c3
1

ehν/kBT − 1

Hence show that the total energy density is given by the Stefan-Boltzmann law

u =

∫

dν uν = aB T 4

What is the expression for the constant aB and what is its value in cgs units?

(ii) Show that the emergent flux from a isotropically emitting blackbody surface is

F =

∫

dν Fν = σ T 4

Estimate the value of σ in cgs units. Hint: You may have to use a result obtained later in Problem 3.

(iii) Show that the entropy S of blackbody radiation is related to the temperature T and volume V by

S =
4

3
aBT

3V

(iv) Show that of two blackbody curves, the one with higher temperature lies entirely above the other.

[2 + 1 + 2 + 1]

3. Flux from a spherical source: A spherical source of radiation (with radius R) has a uniform intensity Iν . Show
that the total flux of radiation from the source at a distance r from the centre of the source will be

Fν = πIν

(

R

r

)2

What is the flux emergent from the source?

[3]

4. Flux from an infinite plane: An infinite plane radiating surface has a uniform specific intensity Iν . What is the
flux at a point situated at a height h above the surface?

[3]
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5. Flux in a pinhole camera: Consider a ‘pinhole camera’ having a small circular hole of diameter d in its front and
having a film plane at a distance L behind it. Show that the flux Fν at the film plane is related to the incident intensity
Iν(Θ,Φ) in the following way

Fν =
π cos4 Θ

4f2
Iν(Θ,Φ)

where f = L/d is the ‘focal ratio.

[4]

Θ

L

6. Radiative transfer equation in terms of brightness temperature: Show that the radiative transfer equation
for thermal emission (i.e., material with Sν = Bν) in the Rayleigh-Jeans regime has the form

dTb

dτν
= −Tb + T

where T is the temperature of the material. Write down the solution when T is constant. What happens when the
medium in optically thick?

[3]

7. Properties of a spherical cloud: Consider a spherical cloud of gas with a radius R and a constant inside temperature
T far away from the observer emitting thermally with a power Pν = dE/(dt dν dV ).

(i) Assuming the cloud to be optically thin, find out how the brightness seen by the observer would vary as a function
of distance b from the cloud centre.

(ii) What is the flux measured at earth from the entire cloud?

(iii) What is the overall effective temperature of the cloud surface?

(iv) How do the measured brightness temperatures compare with the clouds temperature? You can assume that the
frequency of observation ν ≪ kBT/h.

(v) How will the answers to (i)–(iv) be modified if the cloud were optically thick?

[2 + 2 + 1 + 2 + 3]

8. Properties of a supernova remnant: A supernova remnant has an angular diameter ∆θ = 4.3 arc minutes and a
flux at ν = 100 MHz of F100 = 1.6 × 10−19 erg cm−2 s−1 Hz−1. Assume that the emission is thermal. What is the
brightness temperature Tb? What energy regime of the blackbody curve does this correspond to? If the angular size
of the source is extremely small, you can take the intensity to be independent of the direction of observation.

[3]

9. Radiative equilibrium: (i) Show that the moment of the radiative transfer equation can be written as

duν

dt
≡

∂uν

∂t
+∇x · Fν = 4πjν − cκν uν

which has the form of a “conservation equation” (i.e., change in density + divergence of flux = sources − sinks). Here
Fν is the energy flux vector defined as

Fν ≡

∫

dΩ Iν n̂

(ii) The condition of radiative equilibrium is often expressed as

d

dt

(
∫

dν

∫

dΩ Iν

)

= 0
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Show that this is equivalent to
∫

dν (4πjν − cκν uν) = 0

which implies that radiation should not add or subtract a net amount of energy from the system. Write the above
relation in terms of the source function Sν . What happens when κν is independent of the frequency ν?

(iii) Hence show that, for static systems (∂Iν/∂t → 0), the condition for radiative equilibrium can be written as

∇x · F = 0

[3 + 1 + 1]

10. Eddington approximation: Consider a radiation field which is nearly isotropic. The anisotropy can be introduced
by writing the intensity as a power series in µ and retain terms only up to linear

Iν(χ, µ) = aν(χ) + bν(χ)µ

Calculate uν and Pν for this field and show that Eddington approximation holds for this nearly isotropic field.

[2]

11. Solar limb-darkening The observational data for solar limb-darkening is given below. Compare it with the solution
obtained using grey atmosphere and Eddington approximation.

µ Relative intensity
1.00 1.00
0.90 0.944
0.80 0.898
0.70 0.842
0.60 0.788
0.50 0.750
0.40 0.670
0.30 0.602
0.20 0.522
0.10 0.450

[3]

12. Hydrogen in ground state: Calculate the ratio of Hydrogen atoms in the n = 2 state with respect to the ground
state for 3 different temperatures: T1 = 6000 K, T2 = 104 K, T3 = 3×104 K. (Assume hydrogen to be neutral although
it is likely to be ionized at these temperatures.)

[2]

13. Derivation of Saha equation: Consider a system of quantum particles (could be fermions or bosons) called A in
equilibrium at a temperature T .

(i) What is the phase space distribution function fA(t,x,p)?

(ii) Show that the number density of particles is given by

nA(t,x) ≡

∫

d3p fA(t,x,p) =
4π

c3

∫

∞

mAc2
dE E

√

E2 −m2
Ac

4 E fA

(iii) Show that, in the non-relativistic limit (kBT ≪ mAc
2), the expression reduces to

nA =
4πgAc

3

h3
m3

A eµA/kBT

∫

∞

1

dy
√

y2 − 1 e−ymAc2/kBT

You may assume kBT ≪ mAc
2 − µA so that the system is “dilute” (i.e., the occupation numbers are much smaller

than unity).

Evaluate the integral using properties of the modified Bessel function of the second kind Kn(z) and show that

nA =
4πgAckB

h3
m2

A T eµA/kBT K2

(

mAc
2

kBT

)

Then use the asymptotic expression for K2(z) to show that

nA = gA

(

2πmAkBT

h2

)3/2

e(µA−mAc2)/kBT
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(iv) Now consider the equilibrium system p+e ⇋ H+γ. Consider three species A = e, p,H. Write down the expressions
for ne, np and nH .

(v) Finally, show that

np ne

nH
=

2gp
gH

(

2πmekBT

h2

)3/2

e−B/T

where B = (mp +me −mH)c2 is the binding energy of hydrogen atom.

[1 + 2 + 5 + 2 + 2]

14. Effect of Thomson scattering: Consider an (homogeneous) atmosphere of completely ionized hydrogen having
the same density as the density of the Earths atmosphere. Using the fact that a beam of light passing through this
atmosphere will be attenuated due to Thomson scattering by free electrons, calculate the (order of magnitude) path
length which this beam has to traverse before its intensity is reduced to half its original strength. (This problem should
give you an idea of why the cosmological matter-radiation decoupling took place after the number of free electrons was
reduced due to the formation of atoms.)

[2]

4


