ASTRONOMY AND ASTROPHYSICS-I: Assignment 1
 Department of Physics
 Savitribai Phule Pune University
 July - December 2019

26 August 2019
To be returned in the class on 4 September 2019

- The deadline for the submission of the solutions of this assignment will be strictly enforced. No marks will be given if the assignment is not returned in time.
- You are free to discuss the solutions with friends, seniors and consult any books.
- Let me know if you find anything to be unclear or if you think that something is wrong in any of the questions.

1. Magnitude system:

(a) If the absolute magnitude of the Sun is 4.755 , show that the luminosity of a star is related to its absolute magnitude by

$$
M=4.755-2.5 \log _{10}\left(\frac{L}{L_{\odot}}\right) .
$$

(b) If the absolute magnitude of a star is found to be 0.6 , find its luminosity in units of $\mathrm{erg} \mathrm{s}^{-1}$.
(c) Consider another star whose parallax is measured to be 0.01 ". Its apparent magnitude is 6.0 . Find the absolute magnitude and luminosity (in units of $\mathrm{erg} \mathrm{s}^{-1}$) of the star.

$$
[2+2+4]
$$

2. Isothermal sphere: Consider a spherically symmetric galaxy having a radial density profile

$$
\rho(r)=\rho_{0}\left(\frac{r}{r_{0}}\right)^{-2} .
$$

(a) Find the mass $M(<r)$ contained within radius r.
(b) Compute the gravitational potential $\Phi(r)$ within the galaxy.
(c) Compute the rotational velocity $v_{c}(r)$ of the galaxy.

$$
[3+2+2]
$$

3. Jeans theorem: Suppose $K(\vec{x}, \vec{v})$ is a constant of motion as a star moves around within a stellar system (it can be, e.g., energy or angular momentum or any other conserved quantity). Show that a phase space distribution function of the form $f(K(\vec{x}, \vec{v}))$ will give a solution of the collisionless Boltzmann equation.
4. Time periods for the isochrone potential: Show that, for the isochrone potential

$$
\Phi(r)=-\frac{G M}{b+\sqrt{r^{2}+b^{2}}}
$$

the radial time period is given by

$$
T_{r}=\frac{2 \pi G M}{(-2 E)^{3 / 2}}
$$

while the change in azimuthal angle during this period is given by

$$
\Delta \psi=\pi\left(1+\frac{L}{\sqrt{L^{2}+4 G M b}}\right)
$$

What happens to $\Delta \psi$ when $b \rightarrow 0$ and $b \rightarrow \infty$?
5. Optional problem: Dynamical friction: We consider the motion of a body of mass M through a population of stars of individual mass m. We first study the effect on M of an encounter with a single star, and then add the effects of successive encounters with different stars. A single encounter can be described by the motion of the reduced mass in the centre of mass frame.
(i) Let $\left(\vec{x}_{M}, \vec{v}_{M}\right)$ and $\left(\vec{x}_{m}, \vec{v}_{m}\right)$ be the positions and velocities of M and m, respectively; let $\vec{x}=\vec{x}_{m}-\vec{x}_{M}$ and $\vec{v}=\dot{\vec{x}}$. Then, show that the trajectory of the reduced mass μ is given by

$$
\frac{1}{r}=C \cos \left(\psi-\psi_{0}\right)+\frac{G(m+M)}{L^{2}}, \quad C=\sqrt{\frac{2 E}{\mu L^{2}}+\frac{G^{2}(m+M)^{2}}{L^{4}}}
$$

where $\vec{x}=(r, \psi)$ in polar coordinates in the plane of motion, E is the energy and L is the magnitude of the angular momentum.
(ii) Let the component of the initial separation vector that is perpendicular to the initial velocity vector $\vec{v}_{-\infty}=\vec{v}(t=$ $-\infty)$ have length b (see the figure). We call b the impact parameter of the encounter. What are the values of L and E at the initial time $t \rightarrow-\infty$?
Hence show that

$$
C=\frac{1}{b} \sqrt{1+\frac{G^{2}(m+M)^{2}}{b^{2} v_{-\infty}^{4}}}
$$

What is the magnitude of the velocity at $t \rightarrow \infty$?

(iii) For what value of ψ does the trajectory reaches the point of closest approach to the centre of mass?
(iv) Show that

$$
\begin{aligned}
\cos \psi_{0} & =-\frac{G(m+M)}{\sqrt{b^{2} v_{-\infty}^{4}+G^{2}(m+M)^{2}}} \\
\sin \psi_{0} & =\frac{b v_{-\infty}^{2}}{\sqrt{b^{2} v_{-\infty}^{4}+G^{2}(m+M)^{2}}} \\
\tan \psi_{0} & =-\frac{b v_{-\infty}^{2}}{G(m+M)}
\end{aligned}
$$

(v) If $\Delta \vec{v}_{m}$ and $\Delta \vec{v}_{M}$ are the changes in the velocities of m and M during the encounter, show that

$$
\Delta \vec{v}_{m}=\frac{M}{m+M} \Delta \vec{v}, \quad \Delta \vec{v}_{M}=-\frac{m}{m+M} \Delta \vec{v} .
$$

(vi) Show that the angle of deflection θ_{d} (see the figure) is related to ψ_{0} by

$$
\theta_{d}=2 \psi_{0}-\pi
$$

(vii) Let $\Delta v_{M \|}$ and $\Delta v_{M \|}$ be the change in the velocity of M in the direction parallel and perpendicular to $\vec{v}_{-\infty}$, respectively. Show that

$$
\begin{aligned}
\Delta v_{M \|} & =-\frac{m}{m+M} \Delta v_{\|}
\end{aligned}=-2 v_{-\infty} \frac{G^{2} m(m+M)}{b^{2} v_{-\infty}^{4}+G^{2}(m+M)^{2}}, ~=~ G v_{-\infty}^{3} \frac{G m b}{b^{2} v_{-\infty}^{4}+G^{2}(m+M)^{2}} .
$$

(viii) Show that for $b \gg G(m+M) / v_{-\infty}^{2}$, if we keep terms upto $\mathcal{O}\left(b^{-1}\right)$, we get

$$
\Delta v_{\|} \rightarrow 0, \quad \Delta v_{\perp} \approx \frac{2 G m}{b v_{-\infty}}
$$

(ix) If the star of mass M travels through an infinite homogeneous sea of stars, argue that the changes $\Delta \vec{v}_{M \perp}$ would sum to zero, while the changes $\Delta \vec{v}_{M \|}$ would form a non-zero resultant. In consequence, the mass M suffers a steady deceleration, which is said to be due to dynamical friction.

