
Thermodynamics : A review

The aim of thermodynamics is to establish a to deal with systems with “many-particle” (and hence “many degress of freedom”).
It is essential to recognise that new types of regularities arise when the number of particles (N) is large. These can not be reduced
to purely mechanical laws and they cease to have meaning for small number of particles (or degrees of freedom).

Thermodynamics deals with the macroscopic properties of a system, as a whole (as opposed to that of individual particles), of
large number of particles. Any macroscopic system with N>

∼ NAvogadro) is a thermodynamic system. The measureable parameters
of the system are called thermodynamic parameters and a thermodynamic state is described by specifying the values of the
required number of thermodynamic paramters. A macroscopic system has many degrees of freedom, only a few of which are
measurable. Thermodynamics thus concerns itself with the relation between a small number of variables which are sufficient to
describe the bulk behaviour of the system in question. Not all parameters are indepedent and the functional relationship among
thermodynamic parameters in the equilibrium state is called the equation of state.

Basic Definitions

• thermodynamic system : any macroscopic (N>
∼ NA) system; could be (isolated, closed (energy exchange), or open)

• thermodynamic variables : measurable macroscopic quantities (extensive/intensive).

• thermodynamic limit : limN,V→∞N/V = constant
(intensive variables should be system-size independent in this limit);

• internal energy - enegry arising from causes entirely internal to the system (kinetic energy + energy of inter-particle
interaction);

• thermodynamic state : uniquely and completely specified by a set of thermodynamic variables;

• thermodynamic equilibrium : a thermodynamic state unchanging over an interval time, of interest for a particular thermo-
dynamic process (mechanical, thermal, chemical), ∗ this also defines, in comparison, the infinitesimal time-interval; ∗ a
thermodynamic state ususally means an equilibrium state;

• heat - energy absorbed or emitted if temperature changes without any work;

• heat reservoir - heat source/sink, maintains isothermal condition;

• thermodynamic engine : absorbs an amount of heat Q2 > 0 from reservoir at T2, rejects an amount of heat Q1 > 0 to
reservoir at T1 (T2 > T1), performs an amount of work W > 0;

• response functions : response of a system to extermal stimuli (eg. specific heat);

• equation of state : functional relationship between the thermodynamic parameters ( f (P,V,T ) = 0);

• thermodynamic transformation : change of state (quasi-static - slow, reversible - equilibrium maintained at every step,
(isothermal/adiabatic); A thermodynamic process or transformation is any change in the state variables of the system. A
spontaneous process is one that takes place without any change in teh external constraints on the system, due simply to the
internal dynamics of the system.

Thermodynamic Laws

1. Zeroth Law - If two systems are in thermal equilibrium with a third system, they are also in thermal equilibrium with each
other.

2. First Law - The quantity dU defined by dU = d̄Q − d̄W is the same for all transformations from a specific initial state to
a specific final state (Equivalence of work (mechanical energy) and heat).

3. Second Law
Kelvin’s Statement : There exists no thermodynamic transformation whose ‘sole’ effect is to extract a quantity of heat from
a given heat reservoir and to convert it entirely to work.
Clausius’ Statement : There exists no thermodynamic transformation whose ‘sole’ effect is to transfer a quantity of heat
from a colder reservoir to a hotter reservoir.

4. Third Law - The entropy of a system at absolute zero is a universal constant, which may be taken to be zero. By providing
for a zero-point, for every thermodynamic state a unique value of the entropy is ensured.
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Discussion : First Law

This implies that dU is exact and
∫

dU is independent of the path. (Convention : dU = d̄Q − d̄W and d̄W = PdV). Thus we can
defines U, the internal energy, as a state function. The internal energy is defined to within an additive constant and a particular
value corresponds to a chosen reference state. Also, from the definition dU is a perfect differential, a property not shared by d̄Q
and d̄W.

From a mathematical perspective, the most important property of an exact differential is that its integral depends only on its end
points, i.e. if F is an exact differential and i, f are arbitrary initial and final points of a path then,∫ f

i
F = F f − Fi (1)

or equivalently
∮

F = 0. Clausius noted that at equilibrium d̄Q/T is an exact differential with these properties. In thermody-
namics, variables with these properties are called state vairables. At equilibrium, all thermodynamic variables are state variables.
Hence, Taylor expansion exists in the form

dU = PdV − TdS =
∂U
∂V S

dV −
∂U
∂S V

dS , (2)

with appropriate identification of P and T . Similarly, these relations can be written for S , V , N - all extensive variables. These
are most appropriate for isolated system (microcanonical).

The first law is a manifestation of the law of conservation of energy.

Heat capacities

CX = limδT→0 δQ/δT |X

CV =

(
∂U
∂T

)
V
, (3)

CP =

(
∂(U + PV)

∂T

)
P

=

(
∂H)
∂T

)
P
. (4)

Note : CP,CV are extensive quantities.

Ideal Gas : An ideal gas in thermodynamics is defined to have the equation of state PV = NkBT . It can be shown from the
considerations of kinetic theory of gases that for the molecules of an ideal gas the only interaction is an elastic collision between
two molecules. Therefore the internal energy is simply the kinetic energy of the particles, and U depends only on T .

CV =

(
∂U
∂T

)
V

=
dU
dT
⇒ U = CVT + const. (5)

CP −CV =

(
∂(U + PV)

∂T

)
P
−

(
∂U
∂T

)
V

=

(
∂(PV)
∂T

)
P

= NkB. (6)

Discussion : Second Law

Equivalence of Kelvin’s & Clausius’ statements -

1. not K⇒ not C : If ‘not K’ then Q extracted from reservoir T1 and converted into W. Now, W is converted to heat and given
to T2 where T2 > T1. Hence, ‘not C’.

2. not C⇒ not K : If ‘not C’ then Q extracted from reservoir T1 and given to T2 where T2 > T1. Operate an engine between
T1 and T2 such that it extracts Q from T2, gives Q′ to T1 and does work W. Effectively, Q − Q′ is extracted from T1 and
work W is done. Hence, ‘not K’.

Carnot Engine : An engine working in a reversible way (isothermal-adiabatic-isothermal-adiabatic) absorbs an amount of heat
Q2 from a reservoir at T2 and delivers Q1 to T1 performing an amount of work W where T2 > T1.
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The efficiency of a Carnot engine is η = W/Q2 = 1−Q1/Q2 where T2 > T1. If W > 0 then Q1,Q2 > 0 (if W > 0, assume Q1 < 0;
this violates K and hence the assertion follows) and if W < 0 then Q1,Q2 > 0 (a refrigerator).

Carnot’s Theorem - No engine operating between two temperatures is more efficient than a Carnot engine.

Proof - A Carnot engine, C, absorbs Q2 at T2 and delivers Q1 at T1 performing an amount of work W. Another engine, C′,
absorbs absorbs Q′2 at T2 and delivers Q′1 at T1 performing an amount of work W ′. If C operates N-times and C′ operates in
reverse for N′-times then for very large N,N′ we can ensure Q2/Q′2 = N′/N. Now, the total work done is,

W = N′(Q′1 − Q′2) − N(Q1 − Q2) = N′Q′1 − NQ1, (7)

which is equal to the total heat absorbed from the reservoir at T1. This is contrary to second law if W > 0. Therefore, W ≤ 0
implying that ηc ≥ ηc′ .

Absolute scale of temperature - Since the efficiency of a Carnot engine operating between two reservoirs depends only on the
temperatures of the reservoirs, temperature can be defined as T1/T2 = Q1/Q2 = 1 − η.

Exercise - Show that the ideal gas temperature T is identical with the temperature defined using the efficiency of a Carnot engine.

Clausius’ Theorem - In any cyclic transformation throughout which the temperature is defined,
∮ d̄Q

T ≤ 0.

Proof - Let us break the cycle into N infinitesimal steps such that an amount of heat δQi is absorbed at Ti in the i-th step. Also
consider N Carnot engines operating the i-th thermodynamic state and a reservoir at T0 (> Ti for all i). The Carnot engines
absorb d̄Qi

0 from the reservoir at T0 and deposit d̄Qi at Ti. Therefore,

δQi
0 = T0

d̄Qi

Ti
. (8)

Therefore, in a complete cycle of all the Carnot engines and the original transformation the total heat absorbed from the reservoir
at T0 is

Σid̄Qi
0 = T0Σi

d̄Qi

Ti
. (9)

Since after a cycle, the system and the Carnot engines as a whole return to its initial status, the difference of the internal energy is
zero. Therefore, the net result of this cyclic operation is to extract ΣiQi

0 from T0 and convert it entirely to work, in contradiction
to the second law. This is not possible unless ΣiQi

0 ≤ 0, and therefore
∮

d̄Q/T ≤ 0.

Entropy : A corollary of Clausius’ theorem is the definition of entropy. Since, for a reversible process the entire cycle can be run
in the reverse we obtain

∮
d̄Q/T = 0. Therefore, for a reversible transformation

∫
d̄Q/T is independent of path. Therefore, we

can define entropy as S (B) − S (A) =
∫ B

A dQ/T . Hence, for infinitesimal, reversible transformations we can define dS = δQ/T ,
where S is a state function.

1. For any arbitrary transformation
∫ B

A d̄Q/T ≤ S (B) − S (A), equality valid for reversible transformations.

2. Entropy is additive.

3. Entropy of a thermally isolated system never decreases.

Consequences of Second Law -

TdS = CVdT +

((
∂U
∂V

)
T

+ P
)

dV, (10)

TdS = CPdT +

((
∂U
∂P

)
T

+ P
(
∂V
∂P

)
T

)
dP. (11)

Since, dS is an exact differential we can also write -

TdS = CVdT + T
(
∂P
∂T

)
V

dV, (12)

TdS = CPdT − T
(
∂V
∂T

)
P

dP. (13)
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Defining,

α =
1
V

(
∂V
∂T

)
P
, coeff. of thermal expansion (14)

κT = −
1
V

(
∂V
∂P

)
T
, isothermal compressibility (15)

κS = −
1
V

(
∂V
∂P

)
S
, adiabatic compressibility (16)

we have the following relations,

TdS = CVdT +
αT
κT

dV, (17)

TdS = CPdT + αTVdP (18)

CP −Cv =
TVα2

κT
, (19)

CP/CV = γ =
∂V/∂P|T
∂V/∂P|S

, for adiabatic processes. (20)

CV =
TVα2κs

(κT − κS )κT
, (21)

CP =
TVα2

κT − κS
. (22)

Aside : Increase of entropy is the only law of physics that tells us that there is an arrow of time. All other laws of physics are
time-symmetric.

Discussion : Third Law

• Specific heats (defined thus - S (A) =
∫ A

0 C(T )dT/T ) must vanish at absolute zero.

• Coefficients of thermal expansion α vanish at absolute zero.

Even though both the heat capacities and the coefficient of the thermal expansion vanish at absolute zero, experimentally it is
seen that the ratio Vα/CP remains finite as T → 0. This implies that a system can not be cooled to absolute zero by a finite
change of the thermodynamic parameters (for example, since

(
∂P
∂T

)
V(T→0)

→ 0, it can be seen that as T → 0 to obtain a finite
dT , dP should become unbounded). On the other hand, the second law of thermodynamics implies that if a system is at absolute
zero there is no way to heat it to a higher temperature (d̄Q = TdS = 0 at T = 0 for any reversible transformation, meaning at
T = 0 all processes are adiabatic. No reversible way to heat a system which is at T = 0, hence no Carnot engine (therefore, no
other engine) with the lower reservoir at absolute zero.). Combining these two, we arrive at the implication that the temperature
of absolute zero is thermodynamically unattainable.

Axiomatic Postulates

1. There exist particular states of any system which, macroscopically speaking, can be completely characterized by a set of
extensive parameters including its internal energy U. These are the equilibrium states.

2. There exists a function of the extensive parameters, the entropy S , which is defined for all equilibrium states, with the
following properties -

• S is continuous and differentiable, and is monotonically increasing function of U when all other extensive variables
are held constant.

• The entropy of a composite system is additive over the constituent subsystems. S is itself extensive.

3. If a state is not in equilibrium, its entropy will be less that the entropy of the equilibrium state with the same values for
all extensive variables. Left to itself at the fixed values of the extensive parameters, the non-equilibrium state will gain
entropy and try to attain the equilibrium state.
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Gibbs-Duhem Relation

Consider an isolated system, completely described by the extensive thermodynamics variabels S ,V,N, with internal energy U
given by U = E(S ,V,N). If we now consider m copies of this system combined together, then the extensive quantities would add
and for the new system we shall have,

S m,Vm,Nm ≡ mS ,mV,mN . (23)

Moreover, now Um = U(mS ,mV,mN) implying

U(mS,mV,mN) = mU(S,V,N) , (24)

that is, U is a homogeneous function of first order.

Such homogeneous functions have certain special properties which can been seen as follows. Consider a function f (xi) (i = 1, ..N)
such that

f (ui) = m f (xi), (25)

when ui = mxi for all values of i. On the other hand,

∂ f (ui)
∂m

=

N∑
i=1

∂ f
∂ui

.
∂ui

∂m

=

N∑
i=1

∂ f
∂xi

.xi

= m f (xi) . (26)

Therefore, for m = 1

m f (xi) =

N∑
i=1

∂ f
∂xi

.xi . (27)

Applying this to U(S ,V,N) we find that,
U(S ,V,N) = T.S − P.V + µ.N . (28)

Recalling the well known thermodynamic relation dU = TdS − PdV + µdN, we obtain

SdT − VdP + Ndµ = 0 , (29)

implying that it is impossible to vary all the intensive variables freely. This relation is known as the Gibbs-Duhem relation and
distinguishes the intensive variables from the extensive variables, which can vary independently of each other.

Intensive Variables
U = U(S ,V,N)→ dU = T dS − P dV + µ dN ,

where,

T =

(
∂U
∂S

)
V,N

(30)

P = −

(
∂U
∂V

)
S ,N

(31)

µ =

(
∂U
∂N

)
V,S

(32)

T, P, µ are intrinsic quantities of the system.

U is defined in terms of the extensive variables. It can be shown that if U is defined in terms of intensive variables, say
U = U(T,V,N) then there would exist an infinite number of functions A(T,V,N) = U − TS that can lead to the same U(T,V,N)
giving rise to the same physics.

Intensive Variables : Entropic Formulation

S = S (U,V,N),→ T dS = dU + P dV − µ dN ,
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where,

1
T

=

(
∂S
∂U

)
V,N

(33)

P
T

=

(
∂S
∂V

)
U,N

(34)

µ

T
= −

(
∂S
∂N

)
V,U

(35)

T, P, µ are intrinsic quantities of the system.

Thermodynamic Potentials

However, U,V, S ,N may not be the most natural variables to describe all systems. For example, a system at constant temperature
(T constant, hence U is not), or one undergoing particle exchange with its environment (N is not constant, µ is) - by its nature
require certain intensive variables in its description. Such systems are typically connected to external reservoirs, and the effect of
the reservoirs need to be taken into account for correct thermodynamic description of such systems.

It needs to be noted that the intensive and the extensive variables come in conjugate pairs. Typically, an intensive variable is
obtained by differentiating the appropriate thermodynamic potential with respect to the corresponding extensive variable. For
example, we obtain the intensive variable temperature as T = ∂U/∂S |V,N and so on.

In classical mechanics, the Lagrangian description of a system can be transformed to an equivalent Hamiltonian description
through the following Legendre transformation -

L(q, q̇)→ H(p, q) = pq − L(q, q̇) , (36)

where p ≡ ∂L/∂q̇. Similar Legendre transformations can be performed to obtain other thermodynamic potentials from U. For
example, if we consider U(V, S ,N) and perform a Legendre transformation with respect to S we obtain the following.

U(V, S ,N)→ U(V, S ,N) − S
(
∂U
∂S

)
V,N

= U(V, S ,N) − S .T = A(V,T,N) . (37)

A(V,T,N), the Helmholtz free energy, is indeed the correct potential to use while considering equilibrium states under isothermal
conditions; because an equilibrium state is given by either of the following two - maximum entropy or minimum (appropriate)
energy.

Some of the most useful thermodynamic potentials are -

U, internal energy (38)
H = U + PV, enthalpy (39)
A = U − TS , Helmholtz free energy (40)
G = U − TS + PV, Gibbs potential (41)

giving, for infinitesimal, reversible transformations -

dU = TdS − PdV, (42)
dH = TdS + VdP, (43)
dA = −S dT − PdV, (44)
dG = −S dT + VdP. (45)

1. Condition of adiabaticity (thermal isolation) : dS ≥ 0

2. Adiabatic, Isochoric (thermally, mechanically isolated) : dU ≤ 0

3. Adiabatic, Isobaric (thermally isolated, constant pressure) : dH ≥ 0

4. Isothermal, Isochoric (in contact with heat bath, mechanically isolated) : dA ≤ 0

5. Isothermal, Isobaric (in contact with heat bath, constant pressure) : dG ≤ 0
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V A T

U G

S H P

Maxwell relations -

T =

(
∂U
∂S

)
V
, P = −

(
∂U
∂V

)
S

; (46)

T =

(
∂H
∂S

)
P
, V =

(
∂H
∂P

)
S

; (47)

S = −

(
∂A
∂T

)
V
, P = −

(
∂A
∂V

)
T

; (48)

S = −

(
∂G
∂T

)
P
, P =

(
∂G
∂P

)
T
. (49)

Relativistic Systems :
In case of relativistic systems, appropriate thermodymanic quantities need to be modified to include the rest mass energy of the
relevant particles, as follows -

U → U + mc2N , (50)
µ → µ + mc2 , (51)

and so on.

External Fields :
In presence of external fields (electromagnetic, gravitational etc.) the internal energy needs to be modified to incorporate for
those, like -

dU = TdS − PdV + µ dN − B.dM + E.dP , (52)

where B and E are the external magnetic and electric fields with M and P denoting the total magnetic dipole moment and the
total electric dipole moment.

Limitations of Thermodynamics

Thermodynamics works well, starting from a known fundamental relation (equation of state) describing the system. However,
there is no way to determine this fundamental relation within the premises of thermodynamics. Statistical Mechanics provides
for the formalism to derive this macroscopic fundamental relation from the behaviour of the microscopic constituent particles.

Application : Black Hole Thermodynamics

Theoretically, a black hole is a solution of Einstein’s equation for a point mass M. However, the basic physical idea behind a
black hole may be understood by considering the escape velocity from a gravitationally bound object of mass M and radius R.
The escape velocity, at the surface of such an object is given by

Vesc =

(
2GM

R

)1/2

. (53)
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Evidently, this purely Newtonian non-relativistic calculation breaks down for 2GM/R > c2 or for R < RG where Rg = 2GM/c2.
A black hole may be thought of as an object whose actual radius is smaller than its gravitational radius, RG from which nothing,
not even light, can escape. However, there is no restriction on matter (or radiation) falling through the radius RG into the black
hole.

Astrophysically, three classes of BHs are of interest -

• Stellar mass BH - They have masses ∼ 10 - 100 M�and are thought to be formed in supernova explosions.

• Supermassive BH - These collapsed star clustersare understood to be present in the centres of active galaxies (accretion
onto these power the extremely energetic phenomena associated with quasars and AGNs) and the masses range from
∼ 106 M� for the central black hole in the Milky Way to > 109 M� for some quasars.

• Mini BH - These are objects that could have formed in the early Universe. There is no direct evidence for the existence of
mini BH.

Since M increases as r3 at fixed density, one can have a BH at any density. For a solar mass, the critical density is a little above
nuclear density. In fact, a neutron star of mass 1.4M�has a radius of about 10 KM and a Schwarzschild radius of about 3 KM,
so it is rather close to the Schwarzschild limit. A black hole formed from a billion stars in a galactic center can initially have an
average density lower than that of ordinary matter. Of course the stars will collapse together, and eventually reach much higher
(in fact infinite) density.

Is an elementary particle a black hole? No! Its Compton wavelength is much greater than its Schwarzschild radius. For a proton,
λ/RG ' 1039. When the Compton wavelength of a particle is of the order of RG we have -

λC =
~

Mc
∼

GM
c2 (54)

or

M =

(
~c
G

) 1
2

, (55)

where this is the Planck Mass (MP). Therefore, we have the following -

MP =

(
~c
G

) 1
2

∼ 10−5 gm (56)

EP =

(
~c5

G

) 1
2

∼ 1019 GeV (57)

`P =

(
~G
c3

) 1
2

∼ 10−33 cm . (58)

There are certain problems with the thermodynamics of such a classical black hole. One of the problems is associated with the
change in entropy when material falls into a black hole. If a black hole does not have any entropy then the entropy associated
with the infalling material is lost to the rest of the Universe, contradicting the second law of thermodynamics (dS ≥ 0). (Here we
need to think of entropy as a measure of the configuration space or the information content of the system under consideration.)
Moreover, a classical black hole absorbs radiation but does not emit any. These problems are overcome by assigning a temperature
and an entropy to a black hole, such that they are in conformity with thermodynamical laws.

The resolution actually comes from the proposition of Hawking radiation. Stephen Hawking argued that a black hole can radiate
when quantum effects are taken into account. According to the theory of Quantum Electrodynamics there exist fluctuations in
a vacuum in which virtual pairs of electrons and positrons are created and destroyed over timescale of δt such that δt δE ∼ ~,
where δE ∼ 2mc2, m being the mass of the particle/anti-particle. It is known that these virtual pairs can become real pairs in
presence of electro-magnetic fields. Hawking argued that this is also the case in presence of a gravitational field. The electron
and the positron are created very close to each other but not exactly at the same point. For pairs created near R = RG it is possible
for one particle to be created at R < RG (don’t ask me how!) and the other at R > RG. The former is trapped and falls into the
black hole while the latter escapes. Hawking radiation consists of such escaping electrons and positrons.

If Hawking radiation exists then it becomes possible to assign a temperature to a black hole such that it is in equilibrium between
emission and absorption at this temperature. On dimensional grounds, this temperature must be such that the wavelength,
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~c/kBT , of thermal radiation at this temperature is of order of RG (the only length-scale of the problem). The numerical value is
determined by a more detailed argument and is given by

T =
~c3

8πkBG
M−1 ' 10−7

(
M

M�

)−1

K . (59)

The area of a black hole is taken to be,

A = 4πR2
G =

16πG2M2

c4 . (60)

Now, the area of a black hole never decreases. Thus if the entropy of a black hole is defined to be proportional to its area, dS ≥ 0
is satisfied. Then entropy is determined by noting that a change in its mass by dM implies a change in its energy by d(Mc2) and
equating this change to the amount of heat. Thus we have,

TdS = d(Mc2) (61)

dS =
8πkBG
~c

MdM

S =
4πGkB

~c
M2 ' 1061

(
M

M�

)2

(62)

=

(
kBc3

4~G

)
A (63)

For a supermassive or a stellar mass black hole, the temperature is exceedingly small (of no practical interest) and the entropy
is exceedingly large. The temperatuer of a BH is so small that it cannot be in thermal equilibrium with BB radiation at any
temperature of practical interest. The entropy of a BH is very large and it increases when the BH accretes matter (thereby
increasing M). This suggests that in practice supermassive and stellar mass BHs are very far from thermodynamic equilibrium
with their surroundings.

[ Historical Development : Starting from theorems proved by Stephen Hawking, Jacob Bekenstein conjectured that the black-hole
entropy was proportional to the area of its event horizon divided by the Planck area. In 1973 Bekenstein suggested (1/2 · ln 2)/4π
as the constant of proportionality, asserting that if the constant was not exactly this, it must be very close to it. The next year,
in 1974, Hawking showed that black holes emit thermal Hawking radiation corresponding to a certain temperature (Hawking
temperature). Using the thermodynamic relationship between energy, temperature and entropy, Hawking was able to confirm
Bekenstein’s conjecture and fix the constant of proportionality at 1/4. Therefore, we have

S BH =
kBA
4`2

P

=

(
kBc3

4~G

)
A , (64)

where A(= 4πR2
G) is the area of the event horizon, and `P =

√
G~/c3 is the Planck length. This is often referred to as the

Bekenstein-Hawking formula. The subscript BH either stands for "black hole" or "Bekenstein-Hawking".]

Laws of BH Mechanics

The four laws of black-hole mechanics, analogous to the laws of thermodynamics, were discovered by Brandon Carter, Stephen
Hawking, and James Bardeen.

The zeroth law : The horizon has constant surface gravity for a stationary black hole.

This is analogous to the zeroth law of thermodynamics, which states that the temperature is constant throughout a body in thermal
equilibrium. It suggests that the surface gravity is analogous to temperature. T constant for thermal equilibrium for a normal
system is analogous to κ constant over the horizon of a stationary black hole.

The first law : For perturbations of stationary black holes, the change of energy is related to change of area, angular momentum,
and electric charge by

dU =
κ

8π
dA + Ω dJ + Φ dQ, (65)

where U is the energy, κ(= c4/GM) is the surface gravity, A is the horizon area, Ω is the angular velocity, J is the angular
momentum, Φ is the electrostatic potential and Q is the electric charge.

Analogously, the first law of thermodynamics is a statement of energy conservation, which contains on its right side the term
TdS .
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The second law : The horizon area is, assuming the weak energy condition, a non-decreasing function of time:

dA
dt
≥ 0. (66)

This "law" was superseded by Hawking’s discovery that black holes radiate, which causes both the black hole’s mass and the
area of its horizon to decrease over time.

The second law is the statement of Hawking’s area theorem. Analogously, the second law of thermodynamics states that the
change in entropy in an isolated system will be greater than or equal to zero for a spontaneous process, suggesting a link between
entropy and the area of a black-hole horizon. However, this version violates the second law of thermodynamics by matter losing
(its) entropy as it falls in, giving a decrease in entropy. However, generalizing the second law as the sum of black-hole entropy
and outside entropy, shows that the second law of thermodynamics is not violated in a system including the universe beyond the
horizon.

The third law : It is not possible to form a black hole with vanishing surface gravity. κ = 0 is not possible to achieve.

Extremal black holes have vanishing surface gravity. Stating that κ cannot go to zero is analogous to the third law of thermody-
namics, which states that the entropy of a system at absolute zero is a well defined constant. This is because a system at zero
temperature exists in its ground state. Furthermore, δS will reach zero at zero temperature, but S itself will also reach zero, at
least for perfect crystalline substances. No experimentally verified violations of the laws of thermodynamics are known.

The power radiated in Hawking radiation can be estimated from the standard formula for the power radiated by a black body.

dE
dt
∝ AT 4 ∝

16πG2

c4 M2
(
~c3

8πkBG

)4

M−4 ∝
~4c8

45π3k4
BG2

M−2 . (67)

Thus Hawking radiation increases with decreasing mass of the Black Hole. The emission of the radiation causes the mass to
decrease, with power equal to −c2dM/dt. Thus Hawking radiation causes a Black Hole to radiate away its mass, so that the mass
decreases at a rate dM/dt ∝ −M2. Therefore, we have, remembering that the proporitionality constant is the Stefan-Boltzmann
constant σ ∝ k4

B/~
3c2

dM
dt
∝
~c4

G2 M−2 . (68)

On integrating this expression one finds that the mass reduces to zero in a finite time, which is defined as,

τ ∼
G2M3

~c4 ∼ 1010
(

M
1015 gm

)3

year . (69)

It follows that Black Hole masses less than about 1015 gm evaporate due to Hawking radiation in less than the age of the
Universe. An evaporating Black Hole would give an intense burst of high energy radiation. There is no convincing evidence that
this predicted phenomenon has been observed, implying a restriction on the properties of mini black holes that might have been
created in the Big Bang.
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