- Recap
- Weiner-Khinchin theorem
- Van Cittert-Zernicke theorem

Astronomical Techniques II : Lecture 3

Ruta Kale

Low Frequency Radio Astronomy
(Chp. 1, 2)
Synthesis imaging in radio astronomy II, Chp 1

A basic radio telescope

- Brightness temperature, Antenna temperature
- Antenna parameters (directivity, illumination, gain, surface errors)
- Far field antenna pattern = FT(aperture distribution)

The Wiener-Khinchin Theorem

Consider a random process $x(t)$. The auto-correlation of x is defined as

$$
r_{x x}(t, \tau)=\langle x(t) x(t+\tau)\rangle \quad \text { for stationary } \quad r_{x x}(\tau)=\langle x(t) x(t+\tau)\rangle
$$

where angular brackets indicate taking the mean value.
The Fourier transform $\mathrm{S}(\mathrm{v})$ of the auto-correlation function is the power spectrum:

$$
S(\nu)=\int_{-\infty}^{\infty} r_{x x}(\tau) e^{-i 2 \pi \tau \nu} d \tau \quad \text { and } \quad r_{x x}(\tau)=\int_{-\infty}^{\infty} S(\nu) e^{i 2 \pi \tau \nu} d \nu
$$

The auto-correlation function is the Fourier transform of the power spectrum.

- Weiner-Khinchin theorem

The Wiener-Khinchin Theorem

Example: A process whose auto-correlation function is a delta function has a power spectrum that is flat - "white noise".

In radio astronomy we usually have band-limited signals - in this case autocorrelation is a sinc function with a width $\sim 1 / \Delta v$.

This width is also called the "coherence time" of the signal.

$$
S(\nu)=\int_{-\infty}^{\infty} r_{x x}(\tau) e^{-i 2 \pi \tau \nu} d \tau \quad \text { and } \quad r_{x x}(\tau)=\int_{-\infty}^{\infty} S(\nu) e^{i 2 \pi \tau \nu} d \nu
$$

The auto-correlation function is the Fourier transform of the power spectrum.

- Weiner-Khinchin theorem

Temporal and spatial correlations

In the previous example we had random processes that are a function of time alone. But the signal received from a distant cosmic source is in general a function of both time and receiver location. One can also define spatial correlation functions.

Consider the signal $E(r)$ at a particular instant in the observer's plane, then the spatial correlation function is:

$$
V(x)=\left\langle E(r) E^{*}(r+x)\right\rangle
$$

This function V is referred to as the visibility and is central to the topic of interferometry.

Can we do without interferometry ?

Rayleigh's criterion (resolution is diffraction limited) for an aperture size of size D,

$$
\theta \sim \lambda / D
$$

Resolution of single dishes in radio bands:
For a dish of diameter 10 m and observing frequency of $21 \mathrm{~cm}=$?
To match the resolution of our eye $\sim 20^{\prime \prime}$, at 21 cm we need a dish of diameter ~ ?? (calculate).

Can we do without interferometry ?

Rayleigh's criterion (resolution is diffraction limited) for an aperture size of size D,

$$
\theta \sim \lambda / D
$$

Resolution of single dishes in radio bands:
For a dish of diameter 10 m and observing frequency of 21 cm ,
To match the resolution of our eye $\sim 20^{\prime \prime}$, at 21 cm we need a dish of diameter ~ ?? (calculate).

Hard to learn about sources in the absence of a match with optically known sources.

In optical, resolutions are sub-arcsec - limited by atmospheric "seeing". Impractical mechanically to make antennas of such dimensions for radio wavelengths.

Single dish telescopes

However for certain observations single dish telescopes are still useful and are being built.

Five hundred metre Aperture Spherical Telescope (FAST), since 2016 China

Arecibo (operational since Nov 1963) 305 m
Collapsed (Dec 1, 2020)

Van Cittert-Zernicke theorem

This relates the spatial coherence function, $V\left(r_{1}, r_{2}\right)=$ $<E\left(r_{1}\right) E^{*}\left(r_{2}\right)>$ to the intensity distribution of the incoming radiation $I(s)$. It shows that $V\left(r_{1}, r_{2}\right)$ only depends on $r_{1}-r_{2}$ and if all the measurements are in a plane,

$$
V\left(r_{1}, r_{2}\right)=F\{I(s)\}
$$

Proof in "Principles of Optics" by Born and Wolf (Chapter 10).

Van Cittert-Zernicke theorem

Consider a distant source approximated as a brightness distribution on the celestial sphere located at distance R from the observer. Let the electric field at the point $P_{1}{ }^{\prime}$ be $\varepsilon\left(P_{1}{ }^{\prime}\right)$.
The electric field $E\left(P_{1}\right)$ at the observation point can be given by,

$$
E\left(P_{1}\right)=\int \varepsilon\left(P_{1}^{\prime}\right) \frac{e^{-i k D\left(P_{1}^{\prime}, P_{1}\right)}}{D\left(P_{1}^{\prime}, P_{1}\right)} d \Omega_{1}
$$

$D\left(P_{1}^{\prime}, P_{1}\right)=$ Distance between P_{1} and $\mathrm{P}_{1}{ }^{\prime}$

Van Cittert-Zernicke theorem

Consider a distant source approximated as a brightness distribution on the celestial sphere located at distance R from the observer. Let the electric field at the point $P_{1}{ }^{\prime}$ be $\varepsilon\left(P_{1}{ }^{\prime}\right)$.
The electric field $E\left(P_{1}\right)$ at the observation point can be given by,

$$
E\left(P_{1}\right)=\int \varepsilon\left(P_{1}^{\prime}\right) \frac{e^{-i k D\left(P_{1}^{\prime}, P_{1}\right)}}{D\left(P_{1}^{\prime}, P_{1}\right)} d \Omega_{1}
$$

Consider another point P_{2} and $P_{2}{ }^{\prime}$ and the field at P_{2}.

Van Cittert-Zernicke theorem

Consider a distant source approximated as a brightness distribution on the celestial sphere located at distance R from the observer. Let the electric field at the point $P_{1}{ }^{\prime}$ be $\varepsilon\left(P_{1}{ }^{\prime}\right)$.
The electric field $E\left(P_{1}\right)$ at the observation point can be given by,

$$
E\left(P_{1}\right)=\int \varepsilon\left(P_{1}^{\prime}\right) \frac{e^{-i k D\left(P_{1}^{\prime}, P_{1}\right)}}{D\left(P_{1}^{\prime}, P_{1}\right)} d \Omega_{1}
$$

Consider another point P_{2} and $P_{2}{ }^{\prime}$ and the field at P_{2}.
Aim is to find the cross-correlation between the two fields:

$$
\left\langle E\left(P_{1}\right) E^{*}\left(P_{2}\right)\right\rangle
$$

Van Cittert-Zernicke theorem

Consider a distant source approximated as a brightness distribution on the celestial sphere located at distance R from the observer. Let the electric field at the point $P_{1}{ }^{\prime}$ be $\varepsilon\left(P_{1}{ }^{\prime}\right)$.
The electric field $E\left(P_{1}\right)$ at the observation point can be given by,

$$
E\left(P_{1}\right)=\int \varepsilon\left(P_{1}^{\prime}\right) \frac{e^{-i k D\left(P_{1}^{\prime}, P_{1}\right)}}{D\left(P_{1}^{\prime}, P_{1}\right)} d \Omega_{1}
$$

$$
\left\langle E\left(P_{1}\right) E^{*}\left(P_{2}\right)\right\rangle=\int\left\langle\varepsilon\left(P_{1}^{\prime}\right) \varepsilon^{*}\left(P_{2}^{\prime}\right)\right\rangle \frac{e^{-i k\left[D\left(P_{1}^{\prime}, P_{1}\right)-D\left(P_{2}^{\prime}, P_{2}\right)\right]}}{D\left(P_{1}^{\prime}, P_{1}\right) D\left(P_{2}^{\prime}, P_{2}\right)} d \Omega_{1} d \Omega_{2}
$$

Van Cittert-Zernicke theorem

$$
\left\langle E\left(P_{1}\right) E^{*}\left(P_{2}\right)\right\rangle=\int\left\langle\varepsilon\left(P_{1}^{\prime}\right) \varepsilon^{*}\left(P_{2}^{\prime}\right)\right\rangle \frac{e^{-i k\left[D\left(P_{1}^{\prime}, P_{1}\right)-D\left(P_{2}^{\prime}, P_{2}\right)\right]}}{D\left(P_{1}^{\prime}, P_{1}\right) D\left(P_{2}^{\prime}, P_{2}\right)} d \Omega_{1} d \Omega_{2}
$$

Assuming that the emission from the source is incoherent then,

$$
\left\langle\varepsilon\left(P_{1}^{\prime}\right) \varepsilon^{*}\left(P_{2}^{\prime}\right)\right\rangle=0 \quad \text { except when } \quad P_{1}^{\prime}=P_{2}^{\prime}
$$

Replace $\mathrm{P}_{2}{ }^{\prime}$ with $\mathrm{P}_{1}{ }^{\prime}$
$<\varepsilon\left(P_{1}{ }^{\prime}\right) \mathcal{E}^{*}\left(\mathrm{P}_{1}{ }^{\prime}\right)>$ is the intensity I at the point $\mathrm{P}_{1}{ }^{\prime}$

Van Cittert-Zernicke theorem

$$
\left\langle E\left(P_{1}\right) E^{*}\left(P_{2}\right)\right\rangle=\int\left\langle\varepsilon\left(P_{1}^{\prime}\right) \varepsilon^{*}\left(P_{2}^{\prime}\right)\right\rangle \frac{e^{-i k\left[D\left(P_{1}^{\prime}, P_{1}\right)-D\left(P_{2}^{\prime}, P_{2}\right)\right]}}{D\left(P_{1}^{\prime}, P_{1}\right) D\left(P_{2}^{\prime}, P_{2}\right)} d \Omega_{1} d \Omega_{2}
$$

Assuming that the emission from the source is incoherent then,

$$
\begin{gathered}
\left\langle\varepsilon\left(P_{1}^{\prime}\right) \varepsilon^{*}\left(P_{2}^{\prime}\right)\right\rangle=0 \quad \text { except when } \quad P_{1}^{\prime}=P_{2}^{\prime} \\
\left\langle E\left(P_{1}\right) E^{*}\left(P_{2}\right)\right\rangle=\int I\left(P_{1}^{\prime}\right) \frac{e^{-i k\left[D\left(P_{1}^{\prime}, P_{1}\right)-D\left(P_{1}^{\prime}, P_{2}\right)\right]}}{D\left(P_{1}^{\prime}, P_{1}\right) D\left(P_{1}^{\prime}, P_{2}\right)} d \Omega_{1}
\end{gathered}
$$

Van Cittert-Zernicke theorem

$$
\begin{array}{lc}
D\left(P_{1}^{\prime}, P_{1}\right)=\left[\left(x_{1}^{\prime}-x_{1}\right)^{2}+\left(y_{1}^{\prime}-y_{1}\right)^{2}+\left(z_{1}^{\prime}-z_{1}\right)^{2}\right]^{1 / 2} \\
x_{1}^{\prime}=R \cos \left(\theta_{x}\right)=R I & \\
y_{1}^{\prime}=R \cos \left(\theta_{y}\right)=R m & l^{2}+m^{2}+n^{2}=1 \\
y_{1}^{\prime}=R \cos \left(\theta_{z}\right)=R n & d \Omega=\frac{d d m}{\sqrt{1-l^{2}-m^{2}}}
\end{array}
$$

Derive the following approximation:

$$
D\left(P_{1}^{\prime}, P_{1}\right) \simeq R-\left(l x_{1}+m y_{1}+n z_{1}\right)
$$

Similarly for

$$
D\left(P_{1}^{\prime}, P_{2}\right)
$$

Van Cittert-Zernicke theorem

Substituting in the equation:

$$
\left\langle E\left(P_{1}\right) E^{*}\left(P_{2}\right)\right\rangle=\int I\left(P_{1}^{\prime}\right) \frac{e^{-i k\left[D\left(P_{1}^{\prime}, P_{1}\right)-D\left(P_{1}^{\prime}, P_{2}\right)\right]}}{D\left(P_{1}^{\prime}, P_{1}\right) D\left(P_{1}^{\prime}, P_{2}\right)} d \Omega_{1}
$$

$$
\left\langle E\left(P_{1}\right) E^{*}\left(P_{2}\right)\right\rangle=\int I(I, m) e^{-i k\left[l\left(x_{2}-x_{1}\right)+m\left(y_{2}-y_{1}\right)+n\left(z_{1}-z_{1}\right)\right]} \frac{d l d m}{\sqrt{1-l^{2}-m^{2}}}
$$

Notice I is now written as a function of I and m: only two direction cosines are sufficient to uniquely specify a position on the celestial sphere.
We have also dropped the constant R^{2} from the denominator.
Further we express the coordinates in units of wavelength.

Van Cittert-Zernicke theorem

$$
\begin{gathered}
\left\langle E\left(P_{1}\right) E^{*}\left(P_{2}\right)\right\rangle=\int I(I, m) e^{-i k\left[/\left(x_{2}-x_{1}\right)+m\left(y_{2}-y_{1}\right)+n\left(z_{1}-z_{1}\right)\right]} \frac{d l d m}{\sqrt{1-I^{2}-m^{2}}} \\
\qquad \begin{array}{c}
u=\left(x_{2}-x_{1}\right) / \lambda \\
v=\left(y_{2}-y_{1}\right) / \lambda \\
w=\left(z_{2}-z_{1}\right) / \lambda
\end{array}
\end{gathered}
$$

$$
V(u, v, w)=\int I(I, m) e^{-i 2 \pi[l u+m v+n w]} \frac{d l d m}{\sqrt{1-l^{2}-m^{2}}}
$$

Looks like a Fourier transform.
Spatial correlation of the electric field is related to the source brightness distribution.

Special cases

Observations are confined to the $u-v$ plane, $w=0$:

$$
V(u, v)=\int \frac{I(I, m)}{\sqrt{1-I^{2}-m^{2}}} e^{-i 2 \pi[l u+m v]} d l d m
$$

Source brightness is limited to a small region of the sky -

$$
\begin{aligned}
& n=\sqrt{1-I^{2}-m^{2}} \simeq 1 \\
& \qquad V(u, v, w)=e^{-i 2 \pi w} \int I(I, m) e^{-i 2 \pi[l u+m v]} d l d m
\end{aligned}
$$

