- Recap
- Weiner-Khinchin theorem
- Van Cittert-Zernicke theorem

Astronomical Techniques II : Lecture 3

Ruta Kale

Low Frequency Radio Astronomy (Chp. 1, 2) Synthesis imaging in radio astronomy II, Chp 1

A basic radio telescope

- -Feed
- -Receiver front end
- -Reflector
- -Mount
- -Transmission lines
- -Receiver back-end
- -Computer
- Brightness temperature, Antenna temperature
- Antenna parameters (directivity, illumination, gain, surface errors)
- Far field antenna pattern = FT(aperture distribution)

The Wiener-Khinchin Theorem

Consider a random process x(t). The auto-correlation of x is defined as

$$r_{xx}(t, au) = \langle x(t)x(t+ au) \rangle$$
 for stationary $r_{xx}(au) = \langle x(t)x(t+ au) \rangle$
signals

where angular brackets indicate taking the mean value.

The Fourier transform S(v) of the auto-correlation function is the power spectrum:

$$S(
u) = \int_{-\infty}^{\infty} r_{xx}(\tau) e^{-i2\pi\tau
u} d au$$
 and $r_{xx}(\tau) = \int_{-\infty}^{\infty} S(
u) e^{i2\pi\tau
u} d
u$

The auto-correlation function is the Fourier transform of the power spectrum.

- Weiner-Khinchin theorem

The Wiener-Khinchin Theorem

Example: A process whose auto-correlation function is a delta function has a power spectrum that is flat – "white noise".

In radio astronomy we usually have *band-limited signals* - in this case autocorrelation is a sinc function with a width $\sim 1/\Delta v$.

This width is also called the "coherence time" of the signal.

$$S(
u) = \int_{-\infty}^{\infty} r_{xx}(au) e^{-i2\pi au
u} d au$$
 and $r_{xx}(au) = \int_{-\infty}^{\infty} S(
u) e^{i2\pi au
u} d
u$

The auto-correlation function is the Fourier transform of the power spectrum.

- Weiner-Khinchin theorem

Temporal and spatial correlations

In the previous example we had random processes that are a function of time alone. But the signal received from a distant cosmic source is in general a function of both time and receiver location. One can also define spatial correlation functions.

Consider the signal E(r) at a particular instant in the observer's plane, then the spatial correlation function is:

$$V(x) = \langle E(r)E^*(r+x)\rangle$$

This function V is referred to as the visibility and is central to the topic of interferometry.

Can we do without interferometry ?

Rayleigh's criterion (resolution is diffraction limited) for an aperture size of size D,

θ~λ/**D**

Resolution of single dishes in radio bands:

For a dish of diameter 10 m and observing frequency of 21cm = ?

To match the resolution of our eye $\sim 20^{\prime\prime}$, at 21cm we need a dish of diameter $\sim ??$ (calculate).

Can we do without interferometry ?

Rayleigh's criterion (resolution is diffraction limited) for an aperture size of size D,

θ~λ/D

Resolution of single dishes in radio bands:

For a dish of diameter 10 m and observing frequency of 21cm,

To match the resolution of our eye $\sim 20^{\prime\prime}$, at 21cm we need a dish of diameter $\sim ??$ (calculate).

Hard to learn about sources in the absence of a match with optically known sources.

In optical, resolutions are sub-arcsec – limited by atmospheric "seeing". Impractical mechanically to make antennas of such dimensions for radio wavelengths.

Single dish telescopes

However for certain observations single dish telescopes are still useful and are being built.

Arecibo (operational since Nov 1963) 305 m Collapsed (Dec 1, 2020)

Five hundred metre Aperture Spherical Telescope (FAST), since 2016 China

This relates the spatial coherence function, $V(r_1, r_2) = \langle E(r_1)E^*(r_2) \rangle$ to the intensity distribution of the incoming radiation I(s). It shows that $V(r_1, r_2)$ only depends on $r_1 - r_2$ and if all the measurements are in a plane,

$$V(r_1, r_2) = F\{I(s)\}$$

Proof in "Principles of Optics" by Born and Wolf (Chapter 10).

Consider a *distant* source approximated as a brightness distribution on the celestial sphere located at distance R from the observer. Let the electric field at the point P_1 ' be $\mathcal{E}(P_1')$. The electric field $E(P_1)$ at the observation point can be given by,

$$E(P_1) = \int \varepsilon(P_1') \frac{e^{-ikD(P_1',P_1)}}{D(P_1',P_1)} d\Omega_1$$

$$D(P'_1, P_1) = Distance between P_1 and P_1'$$

Consider a *distant* source approximated as a brightness distribution on the celestial sphere located at distance R from the observer. Let the electric field at the point P_1' be $\mathcal{E}(P_1')$. The electric field $E(P_1)$ at the observation point can be given by,

$$E(P_1) = \int \varepsilon(P_1') \frac{e^{-ikD(P_1',P_1)}}{D(P_1',P_1)} d\Omega_1$$

Consider another point P_2 and P_2 ' and the field at P_2 .

Consider a *distant* source approximated as a brightness distribution on the celestial sphere located at distance R from the observer. Let the electric field at the point P_1' be $\mathcal{E}(P_1')$. The electric field $E(P_1)$ at the observation point can be given by,

$$E(P_1) = \int \varepsilon(P_1') \frac{e^{-ikD(P_1',P_1)}}{D(P_1',P_1)} d\Omega_1$$

Consider another point P₂ and P₂' and the field at P₂. Aim is to find the *cross-correlation* between the two fields: $\langle E(P_1)E^*(P_2)\rangle$

Consider a *distant* source approximated
as a brightness distribution on the
celestial sphere located at distance R
from the observer. Let the electric field at
the point P₁' be
$$\varepsilon(P_1)$$
.
The electric field E(P₁) at the observation
point can be given by,
$$E(P_1) = \int \varepsilon(P_1') \frac{e^{-ikD(P_1',P_1)}}{D(P_1',P_1)} d\Omega_1$$
$$\langle E(P_1)E^*(P_2)\rangle = \int \langle \varepsilon(P_1')\varepsilon^*(P_2')\rangle \frac{e^{-ik[D(P_1',P_1)-D(P_2',P_2)]}}{D(P_1',P_1)D(P_2',P_2)} d\Omega_1 d\Omega_2$$

$$\langle E(P_1)E^*(P_2)\rangle = \int \langle \varepsilon(P_1')\varepsilon^*(P_2')\rangle \frac{e^{-ik[D(P_1',P_1)-D(P_2',P_2)]}}{D(P_1',P_1)D(P_2',P_2)} d\Omega_1 d\Omega_2$$

Assuming that the emission from the source is incoherent then,

$$\langle arepsilon(P_1^{'})arepsilon^{*}(P_2^{'})
angle=0$$
 except when $P_1^{'}=P_2^{'}$

Replace P_2' with P_1'

 $< \varepsilon(P_1')\varepsilon^*(P_1') >$ is the intensity I at the point P_1'

$$\langle E(P_1)E^*(P_2)\rangle = \int \langle \varepsilon(P_1')\varepsilon^*(P_2')\rangle \frac{e^{-ik[D(P_1',P_1)-D(P_2',P_2)]}}{D(P_1',P_1)D(P_2',P_2)} d\Omega_1 d\Omega_2$$

Assuming that the emission from the source is *incoherent* then,

$$\langle arepsilon(P_1^{'})arepsilon^{*}(P_2^{'})
angle=0$$
 except when $P_1^{'}=P_2^{'}$

$$\langle E(P_1)E^*(P_2)\rangle = \int I(P_1') \frac{e^{-ik[D(P_1',P_1)-D(P_1',P_2)]}}{D(P_1',P_1)D(P_1',P_2)} d\Omega_1$$

$$D(P'_1, P_1) = [(x'_1 - x_1)^2 + (y'_1 - y_1)^2 + (z'_1 - z_1)^2]^{1/2}$$

$$\begin{array}{l} x_1' = R\cos(\theta_x) = Rl \\ y_1' = R\cos(\theta_y) = Rm \\ y_1' = R\cos(\theta_z) = Rn \end{array} \qquad \begin{array}{l} l^2 + m^2 + n^2 = 1 \\ d\Omega = \frac{dl \ dm}{\sqrt{1 - l^2 - m^2}} \end{array}$$

Derive the following approximation:

$$D(P_1', P_1) \simeq R - (lx_1 + my_1 + nz_1)$$

Similarly for $D(P_1', P_2)$

Substituting in
the equation:
$$\langle E(P_1)E^*(P_2)\rangle = \int I(P_1') \frac{e^{-ik[D(P_1',P_1)-D(P_1',P_2)]}}{D(P_1',P_1)D(P_1',P_2)} d\Omega_1$$

$$\langle E(P_1)E^*(P_2)\rangle = \int I(I,m)e^{-ik[I(x_2-x_1)+m(y_2-y_1)+n(z_1-z_1)]} \frac{dldm}{\sqrt{1-l^2-m^2}}$$

Notice *I* is now written as a function of I and m: only two direction cosines are sufficient to uniquely specify a position on the celestial sphere. We have also dropped the constant R² from the denominator.

Further we express the coordinates in units of wavelength.

$$\langle E(P_1)E^*(P_2)\rangle = \int I(I,m)e^{-ik[I(x_2-x_1)+m(y_2-y_1)+n(z_1-z_1)]} \frac{dIdm}{\sqrt{1-I^2-m^2}}$$

$$u = (x_2 - x_1)/\lambda$$

$$v = (y_2 - y_1)/\lambda$$

$$w = (z_2 - z_1)/\lambda$$

$$V(u, v, w) = \int I(I, m) e^{-i2\pi [Iu + mv + nw]} \frac{dIdm}{\sqrt{1 - I^2 - m^2}}$$

Looks like a Fourier transform.

Spatial correlation of the electric field is related to the source brightness distribution.

Special cases

Observations are confined to the u-v plane, w = 0:

$$V(u, v) = \int \frac{I(I, m)}{\sqrt{1 - I^2 - m^2}} e^{-i2\pi [Iu + mv]} dI dm$$

Source brightness is limited to a small region of the sky -

$$n=\sqrt{1-l^2-m^2}\simeq 1$$

$$V(u, v, w) = e^{-i2\pi w} \int I(I, m) e^{-i2\pi [Iu+mv]} dI dm$$