• Single dish radio telescopes

Astronomical Techniques II : Lecture 2

Ruta Kale

Essential Radio Astronomy (Chp 3) Low Frequency Radio Astronomy (Chp. 3) Tools of radio astronomy, Wilson, et al.

The radio window

The radio window

The radio window

 \sim 15 MHz to \sim 1.5 THz

Low frequency cut-off

High frequency cut-off

$$\frac{v_{\rm p}}{\rm kHz} = 8.97 \sqrt{\frac{N_{\rm e}}{\rm cm^{-3}}}$$

Ionosphere electron density ?

Water and Oxygen molecular lines

A basic radio telescope

color photograph of a Cassegrain telescope is shown in Figure 3.4.

Radio telescope antennas

- The region of transition between a free space wave and a guided wave or vice-versa.
- For a radio telescope the antenna acts as a collector of radio waves.
- The response of an antenna as a function of direction is given by the antenna "pattern". By *reciprocity* this pattern is the same for both receiving and transmitting.

- EM waves impinge on the antenna and create a fluctuating voltage – frequency is the same as of the incoming wave called *Radio frequency (RF)*.
- Needs *amplification*: Low noise amplifier (LNA) at the receiver front-end amplifies the signal.
- Mixer: changes the frequency of the incoming signal. Pure sine wave by tunable signal generator – Local oscillator (LO). Mixing – also called heterodyning.

- EM waves impinge on the antenna and create a fluctuating voltage – frequency is the same as of the incoming wave called *Radio frequency (RF)*.
- Needs *amplification*: Low noise amplifier (LNA) at the receiver frontend amplifies the signal.
- Mixer: changes the frequency of the incoming signal. Pure sine wave by tunable signal generator Local oscillator (LO). Mixing also called heterodyning.
 Brings the signal to an *intermediate frequency (IF)*: allows the use of same backend for a number of different frequencies observed economical.
 Sometimes more mixers: IFs that minimise transmission losses and those that are optimal for best amplification super-heterodyne systems.

- EM waves impinge on the antenna and create a fluctuating voltage – frequency is the same as of the incoming wave called *Radio frequency (RF)*.
- Needs *amplification*: Low noise amplifier (LNA) at the receiver frontend amplifies the signal.
- Mixer: changes the frequency of the incoming signal. Pure sine wave by tunable signal generator Local oscillator (LO). Mixing also called heterodyning.
 Brings the signal to an *intermediate frequency (IF)*: allows the use of same backend for a number of different frequencies observed economical.
 Sometimes more mixers: IFs that minimise transmission losses and those that are optimal for best amplification super-heterodyne systems.

- Another stage of amplification followed by a mixer to convert the signal to *Baseband (BB)*.
- Passed to a backend: square-law detector/ correlation/ a pulsar backend

Effective aperture

Antenna's ability to absorb the waves that are incident on it is measured by the quantity "effective aperture", A_{a} .

 $A_e = \frac{\text{Power density available at the antenna terminals}}{\text{Flux density of the wave incident on the antenna}} \qquad \frac{W/Hz}{W/m^2/Hz} = m^2$

Also called effective area of the antenna. It is a function of direction, thus:

$$A_e = A_e(\theta, \phi)$$

The power pattern of the antenna describes the directional response of an antenna (normalized to unity at the maximum):

$$P(\theta, \phi) = \frac{A_e(\theta, \phi)}{A_e^{max}} \qquad \Theta_{HPBW} \sim \lambda/D$$

Directivity, gain and aperture efficiency

Another measure of the response of the antenna as a function of direction is described by "directivity":

$$D(\theta, \phi) = \frac{\text{Power emitted into } (\theta, \phi)}{(\text{Total power emitted})/4\pi}$$
$$= \frac{4\pi P(\theta, \phi)}{\int P(\theta, \phi) \ d\Omega}$$

Aperture efficiency is the ratio of the maximum effective aperture and the geometric cross sectional area of the reflector:

$$\eta = \frac{A_e^{max}}{A_g}$$

12

Gain and directivity

Gain same as directivity but with an efficiency factor,

$$G(\theta, \phi) = \frac{\text{Power emitted into } (\theta, \phi)}{(\text{Total power input})/4\pi} \eta$$

$$\eta = \frac{A_e^{max}}{A_g}$$

Gain is often given in decibels (dB) which is:

 $G(dB) = 10 \log_{10} G$

The convenience is that when there are amplifiers in succession the total gain is simply the addition.

Consider observing a sky brightness distribution $B(\theta)$ with a telescope having a power pattern as shown. Then the power available at the antenna terminals is:

$$W(\theta') = \frac{1}{2} \int B(\theta) A_e(\theta - \theta') d\theta \qquad 1-\dim$$

Consider observing a sky brightness distribution $B(\theta)$ with a telescope having a power pattern as shown. Then the power available at the antenna terminals is:

$$W(\theta') = \frac{1}{2} \int B(\theta) A_e(\theta - \theta') d\theta$$

Consider observing a sky brightness distribution $B(\theta)$ with a telescope having a power pattern as shown. Then the power available at the antenna terminals is:

$$W(\theta') = \frac{1}{2} \int B(\theta) A_e(\theta - \theta') d\theta$$

In 2-dimensions:

$$W(\theta', \phi') = \frac{1}{2} \int B(\theta, \phi) A_e(\theta - \theta', \phi - \phi') \sin(\theta) d\theta d\phi$$

Consider observing a sky brightness distribution $B(\theta)$ with a telescope having a power pattern as shown. Then the power available at the antenna terminals is:

$$W(\theta') = \frac{1}{2} \int B(\theta) A_e(\theta - \theta') d\theta$$

In 2-dimensions:

$$W(\theta', \phi') = \frac{1}{2} \int B(\theta, \phi) A_e(\theta - \theta', \phi - \phi') \sin(\theta) d\theta d\phi$$

In temperature units,

Recall,

$$T_{B} = \left(\frac{\lambda^{2}}{2k}\right)^{B(\theta,\phi)} \quad P(\theta,\phi) = \frac{A_{e}(\theta,\phi)}{A_{e}^{max}}$$

Consider observing a sky brightness distribution $B(\theta)$ with a telescope having a power pattern as shown. Then the power available at the antenna terminals is:

$$W(\theta') = \frac{1}{2} \int B(\theta) A_e(\theta - \theta') d\theta$$

In 2-dimensions:

18

$$W(\theta', \phi') = \frac{1}{2} \int B(\theta, \phi) A_e(\theta - \theta', \phi - \phi') \sin(\theta) d\theta d\phi$$

In temperature units,

$$T_{A}(\theta',\phi') = \frac{A_{e}^{max}}{\lambda^{2}} \int T_{B}(\theta,\phi) P(\theta-\theta',\phi-\phi') \sin(\theta) d\theta d\phi$$

Antenna temperature is the weighted average of the sky temperature – the weighting function is the power pattern of the antenna.

$$T_{A}(\theta',\phi') = \frac{A_{e}^{max}}{\lambda^{2}} \int T_{B}(\theta,\phi) P(\theta-\theta',\phi-\phi') \sin(\theta) d\theta d\phi$$

Antenna temperature is the weighted average of the sky temperature – the weighting function is the power pattern of the antenna.

If the power pattern is a sharp spike, then the antenna temperature is the same as the sky temperature. In all practical cases antenna temperature is a smoothed version of the sky temperature.

Main lobe axis (or bore sight)

width (HPBY

etween first ulls (RWFN

$$T_{A}(\theta',\phi') = \frac{A_{e}^{max}}{\lambda^{2}} \int T_{B}(\theta,\phi) P(\theta-\theta',\phi-\phi')\sin(\theta)d\theta d\phi$$

Antenna temperature is the weighted average of the sky temperature – the weighting function is the power pattern of the antenna.

If the power pattern is a sharp spike, then the antenna temperature is the same as the sky temperature. In all practical cases antenna temperature is a smoothed version of the sky temperature.

While scanning the sky, if you observe a rise in antenna temperature, it is unclear if it is due to a single bright source or a collection of faint sources – termed as **confusion noise**. Confusion noise is a function of frequency and the distribution of sources in the sky

 $B(\theta)$

Main lobe axis (or bore sight)

the (HPB)

Consider an antenna terminated in a resistor and the entire setup placed in a blackbox at temperature T. At thermal equilibrium, the power flowing from resistor to antenna is:

$$P_{R \to A} = kT$$

Consider an antenna terminated in a resistor and the entire setup placed in a blackbox at temperature T. At thermal equilibrium, the power flowing from resistor to antenna is:

$$P_{R \to A} = kT$$

And that flowing from the antenna to the resistor is:

$$P_{A\to R} = \left(\frac{A_e^{max}kT}{\lambda^2}\right) \int P(\theta, \phi) d\Omega$$

Consider an antenna terminated in a resistor and the entire setup placed in a blackbox at temperature T. At thermal equilibrium, the power flowing from resistor to antenna is:

$$P_{R \to A} = kT$$

And that flowing from the antenna to the resistor is:

$$P_{A\to R} = \left(\frac{A_e^{max}kT}{\lambda^2}\right) \int P(\theta, \phi) d\Omega$$

Since the net power is zero, we can equate the two and get:

$$A_e^{max} = \frac{\lambda^2}{\int P(\theta,\phi) d\Omega}$$

Consider an antenna terminated in a resistor and the entire setup placed in a blackbox at temperature T. At thermal equilibrium, the power flowing from resistor to antenna is:

$$P_{R \to A} = kT$$

And that flowing from the antenna to the resistor is:

$$P_{A \to R} = \left(\frac{A_e^{max}kT}{\lambda^2}\right) \int P(\theta, \phi) d\Omega$$

Since the net power is zero, we can equate the two and get:

$$A_e^{max} = \frac{\lambda^2}{\int P(\theta,\phi) d\Omega}$$

Maximum effective aperture is determined by the shape of the power pattern alone.

For a reflecting telescope,

$$\int P(\theta, \phi) d\Omega \sim \Theta_{HPBW}^2 \sim \left(\frac{\lambda}{D}\right)^2$$

And thus,

$$A_e^{max} \sim D^2$$
 Recall, $A_e^{max} = \frac{\lambda^2}{\int P(\theta, \phi) d\Omega}$

12

The max. effective aperture scales like the geometric area of the reflector. Also, $2D(q_{1}, q_{2})$

$$A_e = A_e^{max} P(\theta, \phi) = \frac{\lambda^2 P(\theta, \phi)}{\int P(\theta, \phi) d\Omega}$$

$$D(\theta,\phi) = \frac{4\pi}{\lambda^2} A_e(\theta,\phi) \qquad \text{Recall:} \quad D(\theta,\phi) = -\frac{4\pi P(\theta,\phi)}{\int P(\theta,\phi) \ d\Omega}$$

Application: Finding power at one antenna from a signal transmitted from another

Consider sending information from antenna 1 with gain $G_1(\theta, \phi)$ and input power P_1 to antenna 2 with directivity $D_2(\theta, \phi)$ at a distance R away. The flux density at antenna 2 is:

$$S = \frac{P_1}{4\pi R^2} G_1(\theta, \phi)$$

Factor G encodes that the power is not isotropically distributed

Power available at antenna 2 is :

$$W = A_{2e}S = \frac{P_1}{4\pi R^2} G_1(\theta, \phi) A_{2e}$$

After substituting for the effective aperture,

Recall:
$$D(\theta, \phi) = \frac{4\pi}{\lambda^2} A_e(\theta, \phi)$$

$$W = \left(\frac{\lambda}{4\pi R}\right)^2 P_1 G_1(\theta, \phi) D_2(\theta', \phi')$$

Friis transmission equation

Reflector antennas

The most common reflector shape is a paraboloid.

The reflector must keep all parts of an on-axis plane wavefront in phase at its focal point.