
Astronomical Techniques II : Lecture 2

Ruta Kale

● Single dish radio telescopes 

Essential Radio Astronomy (Chp 3)
Low Frequency Radio Astronomy 
(Chp. 3)
Tools of radio astronomy, Wilson, et 
al.
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The radio window
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The radio window ~15 MHz to ~1.5 THz
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The radio window ~15 MHz to ~1.5 THz

Low frequency 
cut-of

High frequency 
cut-of

Ionosphere electron 
density ?

Water and Oxygen 
molecular lines
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A basic radio telescope

-Feed
-Receiver front end
-Reflector
-Mount
-Transmission lines
-Receiver back-end
-Computer
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Radio telescope antennas

● The region of transition between a free space wave 
and a guided wave or vice-versa.

● For a radio telescope the antenna acts as a collector 
of radio waves.

● The response of an antenna as a function of direction 
is given by the antenna “pattern”. By reciprocity this 
pattern is the same for both receiving and 
transmitting.
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Block diagram of a single dish radio 
telescope

RF to IF IF to BB
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Block diagram of a single dish radio 
telescope

● EM waves impinge on the antenna and 
create a fluctuating voltage – frequency 
is the same as of the incoming wave 
called Radio frequency (RF).

● Needs amplification: Low noise amplifier 
(LNA) at the receiver front-end amplifies 
the signal.

● Mixer: changes the frequency of the 
incoming signal. Pure sine wave by 
tunable signal generator – Local oscillator 
(LO). Mixing – also called heterodyning.

GMRT LO 175 and 130 MHz IFs for two polarizations 
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Block diagram of a single dish radio 
telescope

● EM waves impinge on the antenna and 
create a fluctuating voltage – frequency 
is the same as of the incoming wave 
called Radio frequency (RF).

● Needs amplification: Low noise amplifier 
(LNA) at the receiver frontend amplifies 
the signal.

● Mixer: changes the frequency of the 
incoming signal. Pure sine wave by 
tunable signal generator – Local oscillator 
(LO). Mixing – also called heterodyning.

Brings the signal to an intermediate 
frequency (IF): allows the use of same 
backend for a number of diferent 
frequencies observed – economical.
Sometimes more mixers: IFs that minimise 
transmission losses and those that are 
optimal for best amplification – super-
heterodyne systems.

GMRT LO 175 and 130 MHz IFs for two polarizations 
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Block diagram of a single dish radio 
telescope

● EM waves impinge on the antenna and 
create a fluctuating voltage – frequency 
is the same as of the incoming wave 
called Radio frequency (RF).

● Needs amplification: Low noise amplifier 
(LNA) at the receiver frontend amplifies 
the signal.

● Mixer: changes the frequency of the 
incoming signal. Pure sine wave by 
tunable signal generator – Local oscillator 
(LO). Mixing – also called heterodyning.

Brings the signal to an intermediate 
frequency (IF): allows the use of same 
backend for a number of diferent 
frequencies observed – economical.
Sometimes more mixers: IFs that minimise 
transmission losses and those that are 
optimal for best amplification – super-
heterodyne systems.

● Another stage of 
amplification followed by a 
mixer to convert the signal 
to Baseband (BB).

● Passed to a backend: 
square-law detector/ 
correlation/ a pulsar 
backend

GMRT LO 175 and 130 MHz IFs for two polarizations 
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Effective aperture

Antenna’s ability to absorb the waves that are incident on it is measured by 
the quantity “efective aperture”, Ae.

Also called efective area of the antenna. It is a function of direction, thus:

The power pattern of the antenna describes the 
directional response of an antenna (normalized 
to unity at the maximum):
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Directivity, gain and aperture efficiency

Another measure of the response of the antenna as a function of direction is 
described by “directivity”:

Aperture efficiency is the ratio of the maximum efective aperture and the 
geometric cross sectional area of the reflector:
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Gain and directivity

Gain is often given in decibels (dB) which is:

G(dB) = 10log10G

The convenience is that when there are amplifiers in succession 
the total gain is simply the addition.

Aperture 
efficiency,

Gain same as directivity but with an efficiency 
factor,
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Effect of the pattern on observed sky:

Consider observing a sky brightness 
distribution B(θ)with a telescope having a 
power pattern as shown. Then the power 
available at the antenna terminals is:

1-dim
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Effect of the pattern on observed sky:

Consider observing a sky brightness 
distribution B(θ)with a telescope having a 
power pattern as shown. Then the power 
available at the antenna terminals is: ½ as only 

one 
polarization 
is absorbed 
by the 
antenna
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Effect of the pattern on observed sky:

Consider observing a sky brightness 
distribution B(θ)with a telescope having a 
power pattern as shown. Then the power 
available at the antenna terminals is:

In 2-dimensions:
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Effect of the pattern on observed sky:

Consider observing a sky brightness 
distribution B(θ)with a telescope having a 
power pattern as shown. Then the power 
available at the antenna terminals is:

In 2-dimensions:

In temperature units,

Recall,

w=kT
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Effect of the pattern on observed sky:

Consider observing a sky brightness 
distribution B(θ)with a telescope having a 
power pattern as shown. Then the power 
available at the antenna terminals is:

Antenna temperature is the weighted average of the sky temperature – the 
weighting function is the power pattern of the antenna.

In 2-dimensions:

In temperature units,
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Effect of the pattern on observed sky:

Antenna temperature is the weighted average of the sky 
temperature – the weighting function is the power pattern of 
the antenna.

If the power pattern is a sharp spike, then the 
antenna temperature is the same as the sky 
temperature. In all practical cases antenna 
temperature is a smoothed version of the sky 
temperature.
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Effect of the pattern on observed sky:

Antenna temperature is the weighted average of the sky 
temperature – the weighting function is the power pattern of 
the antenna.

If the power pattern is a sharp spike, then the 
antenna temperature is the same as the sky 
temperature. In all practical cases antenna 
temperature is a smoothed version of the sky 
temperature.

While scanning the sky, if you observe a rise in 
antenna temperature, it is unclear if it is due to a 
single bright source or a collection of faint 
sources – termed as confusion noise.

Confusion noise is a 
function of frequency 
and the distribution of 
sources in the sky
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Relation between directivity and 
effective aperture

Consider an antenna terminated in a resistor and the entire setup placed in a 
blackbox at temperature T. At thermal equilibrium, the power flowing from 
resistor to antenna is:
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Relation between directivity and 
effective aperture

Consider an antenna terminated in a resistor and the entire setup placed in a 
blackbox at temperature T. At thermal equilibrium, the power flowing from 
resistor to antenna is:

And that flowing from the antenna to the resistor is:
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Relation between directivity and 
effective aperture

Consider an antenna terminated in a resistor and the entire setup placed in a 
blackbox at temperature T. At thermal equilibrium, the power flowing from 
resistor to antenna is:

And that flowing from the antenna to the resistor is:

Since the net power is zero, we can equate the two and get:
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Relation between directivity and 
effective aperture

Consider an antenna terminated in a resistor and the entire setup placed in a 
blackbox at temperature T. At thermal equilibrium, the power flowing from 
resistor to antenna is:

And that flowing from the antenna to the resistor is:

Since the net power is zero, we can equate the two and get:

Maximum efective aperture is 
determined by the shape of the 
power pattern alone.
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Relation between directivity and 
effective aperture

For a reflecting telescope,

And thus,

The max. efective aperture scales like the geometric area of the 
reflector. Also,

Recall:

Recall,
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Application: Finding power at one antenna 
from a signal transmitted from another

Friis transmission equation

Consider sending information from antenna 1 with gain G1(θ,ϕ) and input 
power P1 to antenna 2 with directivity D2(θ,ϕ) at a distance R away. 
The flux density at antenna 2 is:

Power available at antenna 2 is :

After substituting for the efective aperture,

Factor G encodes that 
the power is not 
isotropically distributed

Recall:
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Reflector antennas

The most common reflector shape is a paraboloid.

The reflector must keep all parts of an on-axis plane wavefront 
in phase at its focal point.
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