
Astronomical Techniques II : Lecture 13

Ruta Kale

 
● Self-calibration
● Sensitivity
● W-term

Low Frequency Radio Astronomy (Chp. 14)
http://www.ncra.tifr.res.in/ncra/gmrt/gmrt-users/low-frequency-radio-astronomy

Synthesis imaging in radio astronomy II, Chp 9, 10, 19, 31, 32

Interferometry and synthesis is radio astronomy, Chp. 12

Other references are given on the slides.

http://www.ncra.tifr.res.in/ncra/gmrt/gmrt-users/low-frequency-radio-astronomy
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Recall: Imaging

Image Sampling Visibilities (complex numbers)
Only amp. shown here
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Recall: Imaging → Deconvolution

Image Sampling Visibilities (complex numbers)
Only amp. shown here
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Self-calibration

Aim is to produce a model of the intensity distribution, the Fourier 
transform of which when corrected by gain factors will reproduce the 
measured visibilities within the noise level.

A convenient method due to Schwab 1980 is to minimize the sum of 
squares of residuals by varying complex gains gi, gj and the model sky,

The time over which gains are assumed to be constant depend on the 
effects that govern their variation.

weights
Observed 
visibilities

Model 
visibilities

Complex 
gains
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Self-calibration

Aim is to produce a model of the intensity distribution, the Fourier 
transform of which when corrected by gain factors will reproduce the 
measured visibilities within the noise level.

A convenient method due to Schwab 1980 is to minimize the sum of 
squares of residuals by varying complex gains gi, gj and the model sky,

In most cases we have small number of degrees of freedom (the gains to 
be determined) and a large number of measurements of visibilities.
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Self-calibration

The sky intensity model can be iteratively refined – this is done via self-
calibration. The name follows after the fact that we are using the image 
itself as its own calibrator.

The iterative recipe is:

- Make an initial model of the sky (use CLEAN).
- Solve for complex gains.
- find the corrected visibility, 

- Form a new model from the corrected data using constraints on the source 
structure.
- Again solve for complex gains and repeat until there is no improvement.
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Self-calibration

The sky intensity model can be iteratively refined – this is done via self-
calibration. The name follows after the fact that we are using the image 
itself as its own calibrator.

The iterative recipe is:

- Make an initial model of the sky (use CLEAN).
- Solve for complex gains.
- find the corrected visibility, 

- Form a new model from the corrected data using constraints on the source 
structure.
- Again solve for complex gains and repeat until there is no improvement.

Self-calibration is found to work. But there is no proof of convergence.
 - for telescopes with large number of elements there are few variables in 
terms of gains as compared to the available constraints.
- sources are “simple” in their structure.
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Self-calibration (caution !)

Self-calibration is found to work. But there is no proof of convergence.
 - for telescopes with large number of elements there are few variables in 
terms of gains as compared to the available constraints.
- sources are “simple” in their structure.

Can lead to totally wrong results if the model incorporates features from 
the image which are due to errors in calibration – the very effect which this 
procedure is trying to remove.

Solved for gain phases-only in the first few iterations and then for both 
amplitude and phase of the complex gain.
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Example of self-calibration

First image after 
cleaning.

After first round of 
self-calibration

After second round 
of self-calibration

GMRT 610 MHz data
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Closure quantities and self-calibration

Observed True

Considering a loop of three antennas, the 
observed “closure phase” is, 

Notice that this is independent 
of the individual errors, thus can 
be used.

Jennison 1953, 1958
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Closure quantities and self-calibration

Observed True

Considering a loop of three antennas, the 
observed “closure phase” is, 

Notice that this is independent 
of the individual errors, thus can 
be used.

Jennison 1953, 1958

For an array of N elements, there are ½ N(N-1) – (N-1) 
independent closure phases - ?
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A closure amplitude can be formed for a loop of 4 antennas:

Used in self-calibration by Readhead and Wilkinson 1978.

1. Make a model image.
2. for all independent closure phases, use the model to provide 
estimates of the true phases on two baselines and derive the phase 
on the other baseline in the loop from the observed phase.
3. form a new model using CLEAN from the observed visibility 
amplitudes and the predicted phases.
4. Repeat 2 until the model is satisfactory.

Cotton 1979 revised this scheme (least squares technique).
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Sensitivity

Sensitivity is a measure of the weakest source of emission that can be 
detected.

In radio astronomy power is written in terms of an equivalent temperature, 
T, of a matched termination on the input of the receiver.  Using Rayleigh- 
Jeans approximation to the Plancks’ blackbody radiation, the power is given 
by:

 k
B
 = 1.380 x 10-23 J K-1
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Sensitivity

Sensitivity is a measure of the weakest source of emission that can be 
detected.

In radio astronomy power is written in terms of an equivalent temperature, 
T, of a matched termination on the input of the receiver.  Using Rayleigh- 
Jeans approximation to the Plancks’ blackbody radiation, the power is given 
by:

The power entering the feed is amplified by g in voltage and thus in power,

 k
B
 = 1.380 x 10-23 J K-1

From the source

From the system
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Sensitivity

Sensitivity is a measure of the weakest source of emission that can be 
detected.

In radio astronomy power is written in terms of an equivalent temperature, 
T, of a matched termination on the input of the receiver.  Using Rayleigh- 
Jeans approximation to the Plancks’ blackbody radiation, the power is given 
by:

The power entering the feed is amplified by g in voltage and thus in power,

Ta  is the antenna temperature and 
Tsys is the system temperature: includes receiver noise, feed losses, spillover, 
atmospheric emission, galactic background and cosmic background.

 k
B
 = 1.380 x 10-23 J K-1

From the source

From the system
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Sensitivity

The power from the source can be related to the flux density S, the area of the 
antenna A, the antenna efficiency ηa as

Where

K is a measure of antenna performance.

System temperature is often expressed System equivalent flux density (SEFD) 
: flux density of a source that would deliver the same amount of power

Radiation received 
only from one channel; 
half for an unpolarized 
source.

“gain” of the antenna in Kelvin of antenna 
temperature per Jy of flux density

Jy
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SEFD

For 19 antennas 
in VLBI array at 
5 GHz

Taylor et al 1994
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Sensitivity of an interferometer

Cross terms taken to be zero 
as voltages from source and 
noise are uncorrelated.

Crane and Napier 1989, Walker 1995

Consider an interferometer with a single real output which is the product of the voltages 
from the two elements. The voltage from antenna i before sampling is the sum of source 
voltage and noise voltage. The power from antenna i is given by, (factor a includes gain) 
the expectation value of the square of the voltage:

S
T
 is the total flux density seen by the 

antenna and we assume it is same for all 
the antennas.
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Sensitivity of an interferometer

Cross terms taken to be zero 
as voltages from source and 
noise are uncorrelated.

S
c
 is correlated flux density

Crane and Napier 1989, Walker 1995

Consider an interferometer with a single real output which is the product of the voltages 
from the two elements. The voltage from antenna i before sampling is the sum of source 
voltage and noise voltage. The power from antenna i is given by, (factor a includes gain) 
the expectation value of the square of the voltage:

S
T
 is the total flux density seen by the 

antenna and we assume it is same for all 
the antennas.

The power after cross multiplication in 
the correlator can be obtained as 
(i and j are the antennas):

Efficiency factor that 
accounts for losses in 
the electronics and 
digital equipment

Noise from the 
two antennas 
is uncorrelated
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To obtain the signal-noise-ratio (SNR) we look at the RMS fluctuations of the 
correlator output – consider rms fluctuations of the product of the antenna voltages for 
each sample. 
We use the fact that the square of RMS fluctuation of a Gaussian random variable 
(product from the correlator) is equal to  the expectation value of the variable squared 
minus the square of the mean.

Recall
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To obtain the signal-noise-ratio (SNR) we look at the RMS fluctuations of the 
correlator output – consider rms fluctuations of the product of the antenna voltages for 
each sample. 
We use the fact that the square of RMS fluctuation of a Gaussian random variable 
(product from the correlator) is equal to  the expectation value of the variable squared 
minus the square of the mean.

A standard relation to expand the expectation value of a product of four variables into 
combinations of expectation values of products of two variables is used here.

LFRA and ISRA



26

Assuming all the processes involved are Gaussian processes then we can use the 
properties of these processes that are already known.
If x1, x2, x3 and x4 have a joint Gaussian distribution then, 

See chp 5 of LFRA.
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To obtain SNR we look at the RMS fluctuations of the correlator output. We use the 
fact that the square of RMS fluctuation of a Gaussian random variable (product from 
the correlator) is equal to  the expectation value of the variable squared minus the 
square of the mean.
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To obtain SNR we look at the RMS fluctuations of the correlator output. We use the 
fact that the square of RMS fluctuation of a Gaussian random variable (product from 
the correlator) is equal to  the expectation value of the variable squared minus the 
square of the mean.
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To obtain the noise level in units of flux density,  divide by                                            

and   

Crane and Napier 1989

Source flux density to 
cross correlated 
power

the standard 
deviation of the mean



30

For a non flat bandpass:

A square bandpass is assumed here.

The noise of the correlated signal, S
c
 and of the source power as it adds to the total 

powers at each antenna, S
T
, both contribute to the total noise of the correlated output.
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Special cases assuming flat bandpass

Case of strong source:
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Special cases assuming flat bandpass

Typically source is weak and thus ignoring terms involving flux density S:

Case of strong source:
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Special cases assuming flat bandpass

Typically source is weak and thus ignoring terms involving S:

Case of strong source:

In terms of SEFD: If SEFD same for two 
antennas:
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Sensitivity of an image

Taper Weights:
Natural, 
uniform, 
etc

Weight based 
on S/N of 
individual 
point: 
important for 
VLBI but not 
for arrays 
with identical 
elements 

Normalisation constant

2L: visibility function is 
Hermitian – the 
conjugate points will 
also be known

k=0 term represents zero-spacing – 
not available

Each image pixel is a linear combination of each measured data point.



36

Sensitivity of an image

Consider only the centre of the image:

Taper Weights:
Natural, 
uniform, 
etc

Weight based 
on S/N of 
individual 
point: 
important for 
VLBI but not 
for arrays 
with identical 
elements 

Normalisation constant

2L: visibility function is 
Hermitian – the 
conjugate points will 
also be known

k=0 term represents zero-spacing – 
not available

Image has only real 
values S

R



37

Sensitivity of an image

C is set to:

Consider only the centre of the image:

Taper Weights:
Natural, 
uniform, 
etc

Weight based 
on S/N of 
individual 
point: 
important for 
VLBI but not 
for arrays 
with identical 
elements 

Normalisation constant

Error in this image point is due to error          ; thus variance in I is just the sum of 
variances in the Fourier components:

2L: visibility function is 
Hermitian – the 
conjugate points will 
also be known

k=0 term represents zero-spacing – 
not available

Image has only real 
values S

R

To obtain the result in terms of 
flux density per beam area
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For no taper, natural weights, and all points of equal SNR 
w

k
= w,

T
k
 =1; W

k 
=1

C=
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For no taper, natural weights, and all points of weight w,

N= number of antennas
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Sensitivity of a single polarization image formed from a homogenous array of N identical 
antennas:

For full Stokes data:
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Sensitivity of a single polarization image formed from a homogenous array of N identical 
antennas:

For full Stokes data:

Noise in linear polarized flux density follows Rayleigh statistics and the position angle 
will follow uniform statistics.

See Interferometry and Synthesis in RA for more details.
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Sensitivity

For a single antenna:

For an interferometer:

The sensitivity of an interferometer is square root 2 times better than that of 
each antenna but the same factor worse than a single antenna with an area of 
two antennas.
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For an interferometer with N elements:

In the limit of large N, N(N-1) → N2 and the point source sensitivity of an interferometer 
approaches that of a single antenna whose area equals the total effective area NA

eff
 of 

the interferometer.

In practice, interferometers are slightly less sensitive due to the effects of sampling and 
digitizing.
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