- Imaging

Astronomical Techniques II : Lecture 10

Ruta Kale

Low Frequency Radio Astronomy (Chp. 12)
http://www.ncra.tifr.res.in/ncra/gmrt/gmrt-users/low-frequency-radio-astronomy Synthesis imaging in radio astronomy II, Chp 7
For correlators:

- Talk by Adam Deller
https://nmt.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=42804ec9-3b6c-4b40-8978 -a920010eb3fa

Correlator examples

GMRT, ALMA have an FX correlator.

VLA, IRAM have an XF correlator

IRAM: Institut de Radio Astronomie
 Millimetrique

Imaging

$$
\mathcal{A}(l, m) I(l, m)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

2-D relationship holds while:

$$
\begin{aligned}
& \left|\frac{\Delta \nu}{c} \mathbf{b} \cdot\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)\right| \ll 1 \\
& \left|w\left(l^{2}+m^{2}\right)\right| \ll 1
\end{aligned}
$$

Imaging

$$
\mathcal{A}(l, m) I(l, m)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

Primary beam

$$
\left|\frac{\Delta \nu}{c} \mathbf{b} \cdot\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)\right| \ll 1
$$

$$
\left|w\left(l^{2}+m^{2}\right)\right| \ll 1
$$

Imaging

$$
I(l, m)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

$\left|\frac{\Delta \nu}{c} \mathbf{b} \cdot\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)\right| \ll 1$

$$
\left|w\left(l^{2}+m^{2}\right)\right| \ll 1
$$

Imaging

$$
I(l, m)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

$$
\left|\frac{\Delta \nu}{c} \mathbf{b} \cdot\left(\mathbf{s}-\mathbf{s}_{\mathbf{0}}\right)\right| \ll 1
$$

$$
\left|w\left(l^{2}+m^{2}\right)\right| \ll 1
$$

Discrete measurements:

$$
\left(u_{k}, v_{k}\right), k=1, \ldots, M
$$

M depends on the number of antennas in an array For an array of 30 antennas like the GMRT, M ?

Imaging

$$
I(l, m)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

Image
Visibilities

Imaging

$$
I^{D}(l, m) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(u, v) V^{\prime}(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

Sampling

Visibilities (complex numbers) Only amp. shown here

Imaging

Imaging

Imaging

$$
I^{D}(l, m) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(u, v) V^{\prime}(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

Direct Fourier Transform and Fast Fourier Transform : two methods of imaging

Direct Vs Discrete Fourier Transform

Due to computational advantages fast algorithms to find the Discrete Fourier Transform (DFT) are most commonly used in radio astronomy (algorith for DFT: Fast Fourier Transform).

Application of FFTs requires bringing data to regular grid and then performs the transform.

Only in special cases where number of antenna elements are few, the "direct Fourier Transform" is used.

Imaging

$$
I^{D}(l, m) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(u, v) V^{\prime}(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

Direct Fourier Transform and Fast Fourier Transform : two methods of imaging

Imaging

$$
I^{D}(l, m) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(u, v) V^{\prime}(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

Direct Fourier Transform and FFT : two methods of imaging
Direct Fourier Transform:

$$
\frac{1}{M} \sum_{k=1}^{M} V^{\prime}\left(u_{k}, v_{k}\right) e^{2 \pi i\left(u_{k} l+v_{k} m\right)}
$$

To be evaluated at every point of a NxN grid.
Number of multiplications needed to evaluate are $\sim 2 \mathrm{MN}^{2}$
M and N are of the same order and thus the number of multiplications needed are $\sim \mathrm{N}^{4}$

Imaging

$$
I^{D}(l, m) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(u, v) V^{\prime}(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

Direct Fourier Transform and FFT : two methods of imaging
Direct Fourier Transform:

$$
\frac{1}{M} \sum_{k=1}^{M} V^{\prime}\left(u_{k}, v_{k}\right) e^{2 \pi i\left(u_{k} l+v_{k} m\right)}
$$

Fast Fourier Transform: interpolation of the data onto a regular grid and then apply FFT algorithm.

The interpolation of data onto a grid is referred to as "gridding".

Fast Fourier Transform

Sampling

Fast Fourier Transform

Requires the data to be on a regular grid.

Gridding

To bring the data to a regular grid required $\sim N$ operations.

Further the FFT algorithms only require $\sim \mathrm{N}^{2} \log _{2} \mathrm{~N}$ operations.
(E. g. Cooley-Tukey algorithm)

Compare this with N^{4} for the DFT case

In most common situations, FFTs are
 used.

Sampling and the point source response or the beam

$$
I^{D}(l, m) \equiv \int^{\infty} \int^{\infty} S(u, v) V^{\prime}(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

Sampling function:

$$
S(u, v)=\sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right)
$$

Sampled visibilities:
$V^{S}(u, v) \equiv \sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right) V^{\prime}\left(u_{k}, v_{k}\right)$

$$
V^{S}=S V^{\prime}
$$

Sampling and the point source response or the beam

$$
I^{D}(l, m) \equiv \int^{\infty} \int^{\infty} S(u, v) V^{\prime}(u, v) e^{2 \pi i(u l+v m)} d u d v
$$

Sampling function:

$$
S(u, v)=\sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right)
$$

Sampled visibilities:
$V^{S}(u, v) \equiv \sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right) V^{\prime}\left(u_{k}, v_{k}\right)$

$$
V^{S}=S V^{\prime} \quad \rightarrow \quad I^{D}=\mathfrak{F} V^{S}=\mathfrak{F}\left(S V^{\prime}\right)
$$

Sampling and the point source response or the beam

$$
\begin{aligned}
& I^{D}(l, m) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(u, v) V^{\prime}(u, v) e^{2 \pi i(u l+v m)} d u d v \\
& V^{S}(u, v) \equiv \sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right) V^{\prime}\left(u_{k}, v_{k}\right) \\
& I^{D}=\mathfrak{F} V^{S}=\mathfrak{F}\left(S V^{\prime}\right) \\
& \text { FT of a product of functions, is the convolution } \\
& \text { of their FTs, } \\
& \text { Ref. FT text book } \\
& \text { e. g. Bracewell }
\end{aligned}
$$

Sampling and the point source response or the beam

$$
\begin{aligned}
& V^{S}(u, v) \equiv \sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right) V^{\prime}\left(u_{k}, v_{k}\right) \\
& I^{D}=\mathfrak{F} V^{S}=\mathfrak{F}\left(S V^{\prime}\right) \\
& \begin{array}{ll}
\text { FT of a product of functions, is the convolution } \\
\text { of their } F T s,
\end{array} \\
& \quad \begin{array}{l}
\text { Ref. FT text book } \\
I^{D}=\mathfrak{F} S * \mathfrak{F} V^{\prime}
\end{array}
\end{aligned}
$$

Sampling and the point source response or the beam

$$
\begin{aligned}
& I^{D}=\mathfrak{F} V^{S}=\mathfrak{F}\left(S V^{\prime}\right) \\
& I^{D}=\mathfrak{F} S * \mathfrak{F} V^{\prime}
\end{aligned}
$$

For a point source of unit flux density, located at I_{0}, m_{0}

$$
\left|V^{\prime}(u, v)\right| \equiv 1 \quad \begin{aligned}
& \text { Assuming there is no } \\
& \text { other noise }
\end{aligned}
$$

FT of this ?

Sampling and the point source response or the beam

$I^{D}=\mathfrak{F} V^{S}=\mathfrak{F}\left(S V^{\prime}\right)$
$I^{D}=\mathfrak{F} S * \mathfrak{F} V^{\prime}$
For a point source of unit flux density, located at $I_{0^{\prime}} m_{0}$

$$
\left|V^{\prime}(u, v)\right| \equiv 1 \quad \begin{aligned}
& \text { Assuming there is no } \\
& \text { other noise }
\end{aligned}
$$

FT of this will be a delta function.

Sampling and the point source response or the beam

$$
\begin{aligned}
& I^{D}=\mathfrak{F} V^{S}=\mathfrak{F}\left(S V^{\prime}\right) \\
& I^{D}=\mathfrak{F} S * \mathfrak{F} V^{\prime}
\end{aligned}
$$

For a point source of unit flux density, located at I_{0}, m_{0}

$$
\left|V^{\prime}(u, v)\right| \equiv 1 \quad \begin{aligned}
& \text { Assuming there is no } \\
& \text { other noise }
\end{aligned}
$$

FT of this will be a delta function.

$\mathfrak{F} V^{\prime}(l, m)=\delta\left(l-l_{0}, m-m_{0}\right)$

Sampling and the point source response or the beam

$I^{D}=\mathfrak{F} V^{S}=\mathfrak{F}\left(S V^{\prime}\right)$
$I^{D}=\mathfrak{F} S * \mathfrak{F} V^{\prime}$
For a point source of unit flux density, located at I_{0}, m_{0}

$$
\left|V^{\prime}(u, v)\right| \equiv 1
$$

Assuming there is no other noise

FT of this will be a delta function.

$$
\mathfrak{F} V^{\prime}(l, m)=\delta\left(l-l_{0}, m-m_{0}\right)
$$

$$
I^{D}=\mathfrak{F} S * \delta\left(l-l_{0}, m-m_{0}\right)=\mathfrak{F} S
$$

Sampling and the point source response or the beam

$$
\begin{aligned}
& I^{D}=\mathfrak{F} V^{S}=\mathfrak{F}\left(S V^{\prime}\right) \\
& I^{D}=\mathfrak{F} S * \mathfrak{F} V^{\prime}
\end{aligned}
$$

For a point source of unit flux density, located at I_{0}, m_{0}

$$
\left|V^{\prime}(u, v)\right| \equiv 1
$$

Assuming there is no other noise

FT of this will be a delta function.

$$
\mathfrak{F} V^{\prime}(l, m)=\delta\left(l-l_{0}, m-m_{0}\right)
$$

$$
I^{D}=\mathfrak{F} S * \delta\left(l-l_{0}, m-m_{0}\right)=\mathfrak{F} S
$$

Synthesized beam:

$$
B=\mathfrak{F} S
$$

Sampling and the point source response or the beam

$$
\begin{aligned}
& I^{D}=\mathfrak{F} V^{S}=\mathfrak{F}\left(S V^{\prime}\right) \\
& I^{D}=\mathfrak{F} S * * \mathfrak{F} V^{\prime}
\end{aligned}
$$

For a point source of unit flux density, located at I_{0}, m_{0}

$$
\left|V^{\prime}(u, v)\right| \equiv 1
$$

Assuming there is no other noise

FT of this will be a delta function.

$$
\begin{aligned}
& \mathfrak{F} V^{\prime}(l, m)=\delta\left(l-l_{0}, m-m_{0}\right) \\
& I^{D}=\mathfrak{F} S * \delta\left(l-l_{0}, m-m_{0}\right)=\mathfrak{F} S
\end{aligned}
$$

Point source response of the array:
Synthesized beam: $B=\mathfrak{F} S$

Synthesized beam

Synthesized beam

Desirable characteristics: Low and uniform sidelobes; high resolution
No unique approach to get all of this. Choice according to the science requirement.

Weighting: control the shape of the beam

$$
S(u, v)=\sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right) \quad B=\mathfrak{F} S
$$

Introduce a weighted sampling distribution:

Weighting: control the shape of the beam

$$
S(u, v)=\sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right) \quad B=\mathfrak{F} S
$$

Introduce a weighted sampling distribution:

$$
W(u, v)=\sum_{k=1}^{M} R_{k} T_{k} D_{k} \delta\left(u-u_{k}, v-v_{k}\right)
$$

$$
\mathrm{T}_{\mathrm{k}}=\text { tapering function }
$$

$$
D_{k}=\text { density weighting }
$$

$$
\mathrm{R}_{\mathrm{k}}=\text { reliability weight }
$$

Weighting: control the shape of the beam

$$
S(u, v)=\sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right) \quad B=\mathfrak{F} S
$$

Introduce a weighted sampling distribution:

$$
\begin{aligned}
& W(u, v)=\sum_{k=1}^{M} R_{k} T_{k} D_{k} \delta\left(u-u_{k}, v-v_{k}\right) \\
& V^{S}(u, v) \equiv \sum_{k=1}^{M} \delta\left(u-u_{k}, v-v_{k}\right) V^{\prime}\left(u_{k}, v_{k}\right) \\
& R_{k}=\text { reliability weight } \\
& V^{W}(u, v)=\sum_{k=1}^{M} R_{k} T_{k} D_{k} \delta\left(u-u_{k}, v-v_{k}\right) V^{\prime}\left(u_{k}, v_{k}\right)
\end{aligned}
$$

Weighting: control the shape of the beam

$$
W(u, v)=\sum_{k=1}^{M} R_{k} T_{k} D_{k} \delta\left(u-u_{k}, v-v_{k}\right) \quad \begin{array}{ll}
\mathrm{T}_{\mathrm{k}}=\text { tapering function } \\
\mathrm{D}_{\mathrm{k}}=\text { density weighting } \\
\mathrm{R}_{\mathrm{k}}=\text { reliability weight }
\end{array}
$$

$$
V^{W}(u, v)=\sum_{k=1}^{M} R_{k} T_{k} D_{k} \delta\left(u-u_{k}, v-v_{k}\right) V^{\prime}\left(u_{k}, v_{k}\right)
$$

If the sampling were a smooth function like a Gaussian we would have no sidelobes.
However it is like a bunch of delta functions - often with large gaps in between.

In an array: typically data points are in the inner region of the uv-plane and are sparse outside - gives rise to more Briggs 1995 (PhD thesis: detailed treatment of weighting of visibilities) weight to shorter spacings.

Weighting: control the shape of the beam

$$
W(u, v)=\sum_{k=1}^{M} R_{k} T_{k} D_{k} \delta\left(u-u_{k}, v-v_{k}\right) \quad \begin{array}{ll}
\mathrm{T}_{\mathrm{k}}=\text { tapering function } \\
\mathrm{D}_{\mathrm{k}}=\text { density weighting } \\
\mathrm{R}_{\mathrm{k}}=\text { reliability weight }
\end{array}
$$

$$
V^{W}(u, v)=\sum_{k=1}^{M} R_{k} T_{k} D_{k} \delta\left(u-u_{k}, v-v_{k}\right) V^{\prime}\left(u_{k}, v_{k}\right)
$$

Tapering weights are used to downweight the data at the outer edge.
Density weights are used to lessen the effect of nonuniform density of sampling in the uv-plane.

The weights are factored into components arbitrarily only for convenience.

Briggs 1995 (PhD thesis: detailed treatment of weighting of visibilities)

Weighting: control the shape of the beam

$$
W(u, v)=\sum_{k=1}^{M} R_{k} T_{k} D_{k} \delta\left(u-u_{k}, v-v_{k}\right) \quad \begin{array}{ll}
\mathrm{T}_{\mathrm{k}}=\text { tapering function } \\
\mathrm{D}_{\mathrm{k}}=\text { density weighting } \\
\mathrm{R}_{\mathrm{k}}=\text { reliability weight }
\end{array}
$$

$$
V^{W}(u, v)=\sum_{k=1}^{M} R_{k} T_{k} D_{k} \delta\left(u-u_{k}, v-v_{k}\right) V^{\prime}\left(u_{k}, v_{k}\right)
$$

$T_{k}=$ tapering function, separable into u and v dependent parts.

$$
T(u, v)=T_{1}(u) T_{2}(v)
$$

A Gaussian taper, for

$$
T_{k}=T\left(r_{k}\right) \quad r_{k} \equiv \sqrt{u_{k}^{2}+v_{k}^{2}} .
$$ example:

$$
T(r)=\exp \left(-r^{2} / 2 \sigma^{2}\right)
$$

Tapering

The synthesized beam width will change depending on the choice of the taper.

Tapering example

Density weighting

Natural weights

$$
D_{k}=1
$$

Uniform weights

$$
D_{k}=\frac{1}{N_{s}(k)}
$$

$\mathrm{N}_{\mathrm{s}}(\mathrm{k})$ is the number of points within a symmetric region in (u, v) of width s centered on k^{th} point.

N_{s} is the number of points within a grid cell.

Density weighting

Natural weights

$$
D_{k}=1
$$

Uniform weights

$$
D_{k}=\frac{1}{N_{s}(k)}
$$

$\mathrm{N}_{\mathrm{s}}(\mathrm{k})$ is the number of points within a symmetric region in (u,v) of width s centered on $\mathrm{k}^{\text {th }}$ point.

Robust weighting: hybrid form of weighting: uses minimisation of summed sidelobe power and thermal noise.

Density weights example

Gridding the visibilities

Motivated by the fact that we want to take full advantage of the FFT algorithms.

We want the data on a "grid" that is uniformly spaced with a power of two points on each side.

Interpolation procedure needed to bring the data onto a grid.

Gridding the visibilities

Gridding by convolution: convolve the weighted sampled visibility with some suitable function and then sample this function on the desired grid.
Value assigned at each grid point will be an average of the local values.

$$
C * V^{W}
$$

$$
\sum_{k=1}^{M} C\left(u_{c}-u_{k}, v_{c}-v_{k}\right) V^{W}\left(u_{k}, v_{k}\right)
$$

Resampling

$$
\begin{aligned}
& V^{R}=R\left(C * V^{W}\right)=R\left(C *\left(W V^{\prime}\right)\right) \\
& R(u, v)=\amalg(u / \Delta u, v / \Delta v)=\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \delta(j-u / \Delta u, k-v / \Delta v)
\end{aligned}
$$

Gridding the visibilities

Gridding by convolution: convolve the weighted sampled visibility with some suitable function and then sample this function on the desired grid.
Value assigned at each grid point will be an average of the local values.

$$
C * V^{W}
$$

Visibilities are a linear combination of M delta functions:

$$
\sum_{k=1}^{M} C\left(u_{c}-u_{k}, v_{c}-v_{k}\right) V^{W}\left(u_{k}, v_{k}\right)
$$

$\mathrm{u}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}$ is a grid point

Gridding the visibilities

Gridding by convolution: convolve the weighted sampled visibility with some suitable function and then sample this function on the desired grid.
Value assigned at each grid point will be an average of the local values.

$$
\sum_{k=1}^{M} C\left(u_{c}-u_{k}, v_{c}-v_{k}\right) V^{W}\left(u_{k}, v_{k}\right)
$$

Resampled visibility:

$$
V^{R}=R\left(C * V^{W}\right)=R\left(C *\left(W V^{\prime}\right)\right)
$$

Normalization of C in connected to the weighting scheme.

Gridding the visibilities

Gridding by convolution: convolve the weighted sampled visibility with some suitable function and then sample this function on the desired grid.
Value assigned at each grid point will be an average of the local values.

$$
V^{R}=R\left(C * V^{W}\right)=R\left(C *\left(W V^{\prime}\right)\right)
$$

Normalization of C in connected to the weighting scheme.
R is the "bed-of-nails" function or the sha Function: a train of delta functions

$R(u, v)=\amalg(u / \Delta u, v / \Delta v)=\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \delta(j-u / \Delta u, k-v / \Delta v)$

Gridding the visibilities

Gridding by convolution: convolve the weighted sampled visibility with some suitable function and then sample this function on the desired grid.
Value assigned at each grid point will be an average of the local values.

$$
\begin{gathered}
C * V^{W} \\
\sum_{k=1}^{M} C\left(u_{c}-u_{k}, v_{c}-v_{k}\right) V^{W}\left(u_{k}, v_{k}\right) \\
V^{R}=R\left(C * V^{W}\right)=R\left(C *\left(W V^{\prime}\right)\right)
\end{gathered}
$$

The "dirty image" can be given by

$$
R(u, v)=\amalg(u / \Delta u, v / \Delta v)
$$

$$
\begin{aligned}
\widetilde{I}^{D} & =\mathfrak{F} R *\left[(\mathfrak{F} C)\left(\mathfrak{F} V^{W}\right)\right] \\
& =\mathfrak{F} R *\left[(\mathfrak{F} C)\left(\mathfrak{F} W * \mathfrak{F} V^{\prime}\right)\right]
\end{aligned}
$$

The "dirty image" can be given by

$$
\begin{aligned}
& \widetilde{I}^{D}=\mathfrak{F} R *\left[(\mathfrak{F} C)\left(\mathfrak{F} V^{W}\right)\right] R(u, v)=\amalg(u / \Delta u, v / \Delta v) \\
&=\mathfrak{F} R *\left[(\mathfrak{F} C)\left(\mathfrak{F} W * \mathfrak{F} V^{\prime}\right)\right] \\
&(\mathfrak{F} R)(l, m)=\Delta u \Delta v \amalg(l \Delta u, m \Delta v)=\Delta u \Delta v \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \delta(j-l \Delta u, k-m \Delta v)
\end{aligned}
$$

- Aliasing is introduced due to convolution with the scaled sha function.
- Resampling makes dirty image a periodic function of I and m of period $1 / \Delta u$ and $1 / \Delta v$.

Graphical representation

Model source: symmetric

Synthesized beam

Dirty image if a direct FT is computed

Model Visibilities:
Real and even due to symmetry

Sampling: central hole, falling density towards the outskirts

Sampled visibilities

FT of the convolution function

Effect in the image domain

Sampled visibilities

Convolution function

Convolved sampled visibilities

Dirty image: aliasing

Resampled visibility

Divide by the FT of the convolution function

This image is far from satisfactory representation of the actual distribution: can do better than this by deconvolution.

Choice of the gridding convolution function

Desired choices to avoid aliasing:
a) image is large enough to include any sources at the edges.
b) avoid under sampling
c) use a gridding convolution function whose Fourier transform drops off rapidly outside the image.
C is chosen to be real and even. C is separable $C(u) C(v)$.

1. a pillbox function
2. truncated exponential
3. a truncated sinc function
4. an exponential multiplied by a truncated sinc
5. a truncated spheroidal
