uGMRT Primary Beam Correction: CASA tasks

Author: Ruta Kale Date: 4th October2021

These are modifications of the CASA task "widebandpbcor" available in CASA.

1. For usage in CASA 6: task "ugmrtpb"

The task is available on github over here:

https://github.com/ruta-k/uGMRTprimarybeam-CASA6

Please follow the procedure to incorporate new task in CASA 6 given over here: <u>https://casadocs.readthedocs.io/en/stable/api/casashell/buildmytasks.html</u>

Once the task is ready to be used, follow the examples given below to run the task for your image.

Example 1: Suppose test.ms is the visibility file containing 4 spectral windows (0, 1, 2 and 3) containing 20 channels each. An image with the name "target" (prefix) is produced using nterms = 2 in tclean. Following will be the inputs for the task.

vis = 'test.ms' # Name of measurement set.

imagename = 'target' # Name-prefix of multi-termimages to operate on.

nterms = 2 # Number of taylor terms to use

threshold = " # Intensity above which to re-calculate spectral index

action = 'pbcor' # PB-correction (pbcor) or only calc spectral-index (calcalpha)

reffreq = " # Reference frequency (if specified in clean)

pbmin = 0.1 # PB threshold below which to not correct

field = " # Fields to include in the PB calculation

spwlist = [0,1,2,3] # List of N spw ids

chanlist = [10,10,10,10] # List of N channel ids weightlist = [1,1,1,1]

Example 2: Suppose test.ms is the visibility file containing a single spectral window (0) containing 160 channels. An image with the name "target" (prefix) is produced using nterms = 2 in tclean. Given the width of the spectral window, you may choose to sample it at some n points to get the primary beam shape. In this example I have chosen n=5. Following will be the inputs for the task.

vis = 'test.ms' # Name of measurement set.

imagename = 'target' # Name-prefix of multi-termimages to operate on.

nterms = 2 # Number of taylor terms to use

threshold = " # Intensity above which to re-calculate spectral index

action = 'pbcor' # PB-correction (pbcor) or only calc spectral-index (calcalpha)

reffreq = " # Reference frequency (if specified in clean)

pbmin = 0.1 # PB threshold below which to not correct

field = " # Fields to include in the PB calculation

spwlist = [0,0,0,0,0] # List of N spw ids

chanlist = [40,80,120,140] # List of N channel ids

weightlist = [1,1,1,1,1]

2. For usage in CASA versions < 6

The task is available on github over here:

https://github.com/ruta-k/uGMRTprimarybeam

Please follow the steps given below:

- Keep the task_wbpbgmrt.py and wbpbgmrt.xml files in the same directory as your image and the visibility file.
- Start CASA in this directory.
- At the CASA prompt give the command os.system('buildmytasks') It produces a few new files in this directory; one of which is 'mytasks.py'.
- At the CASA prompt give the command execfile('mytasks.py') The task named wbpbgmrt is ready for use.
- The command 'inp wbpbgmrt' at CASA prompt will show the inputs to this task.
- vis = visibilities corresponding to the image which needs to be corrected for PB.
- imagename = provide the prefix of the imagename.
- chanlist = list of channel numbers across the band (see example below)
- spwlist and weightlist are lists of the same length as chanlist. For GMRT spwlist is a list of zeros and weightlist is a list of 1s. (see example)
- nterms = number of terms used in imaging with tclean/clean.
- Example: Images with prefix "selfcal" are created by tclean from the MS file file.ms. file.ms has 200 channels and nterms= 2 was used in imaging. wbpbgmrt(vis = 'file.ms', imagename ='selfcal', nterms = 2, action ='pbcor', chanlist =[10, 50, 100, 150, 190], spwlist =[0,0,0,0,0], weightlist=[1,1,1,1,1])
- Please make sure that the correction is made as expected by checking the flux densities of some bright sources in your field spread over the full imaged area.

3. For usage in CASA versions < 6 with updated polynomial for band-4 This is a branch of the code described in Sec. 2.

https://github.com/ruta-k/uGMRTprimarybeam/tree/b4order10poly

The usage is the same as for Sec. 2.