THE INTERSTELLAR MEDIUM: XII The Hot Ionized Medium

Nissim Kanekar National Centre for Radio Astrophysics, Pune

OUTLINE

- Background.
- The hot ionized medium: Structure and probes.
- OVI absorption studies.
- X-ray emission studies.
- Physical condition in the HIM.

BACKGROUND

- Warm Ionized Medium: T ~ 8000 K; $n \sim 0.03 \text{ cm}^{-3}$; Mass ~ 10^9 M_{\odot} .
- Pulsar dispersion: Group velocity in a plasma is lower at lower frequencies: High frequency signals arrive earlier. $DM = \int n_e ds$.
- Typical DM ~ 30 pc cm⁻³ at 1 kpc distance \Rightarrow n₀ = 0.03 cm⁻³ !
- For a uniform plasma: Scale height ~ 1830 pc; $n_0 = 0.014 \text{ cm}^{-3}$.
- Determine the Galactic distribution of free electrons via DM (++).
- H\$\alpha\$ emission studies: $I_{H\alpha} = (hv_{H\alpha}/4\pi) \times \alpha_{H\alpha} \times EM$; $EM = \int n_e^2 ds$.
- EM (Plane) ~ (9 23) cm⁻⁶ pc $\Rightarrow n_e^2 \sim (4.5 11.5) \times 10^{-3} \text{ cm}^{-6}$.
- Compare DM and EM \Rightarrow Low WIM filling factor, f ~ 0.05 0.2.
- Ionization by O stars ⇒ UV photons must travel large distances!
 ⇒ Requires HI "holes" for propagation ⇒ Clumpy WIM & WNM !

The Hot Ionized Medium

- Predicted by Lyman Spitzer in 1956: HI clouds far above the plane would be over-pressured, and would rapidly expand to the low background density ⇒ Hot gas for pressure support! (Spitzer 1956)
- Spitzer: T ~ 10^6 K; $n_e \sim 5 \times 10^{-4}$ cm⁻³; scale height ~ 7.5 kpc.
- Balloon-based X-ray emission; *Copernicus* OVI UV absorption! (Bowyer 1968; Rogerson et al. 1973)

THE HOT IONIZED MEDIUM

- Highly ionized gas, e.g. CIV, NV, OVI, SVI. Fills the Galactic halo. Temperature ~ $3 \times 10^5 - 3 \times 10^6$ K. Density ~ 0.001 - 0.003 cm⁻³.
- Not enough UV photons for photo-ionization and heating ⇒
 Collisional ionization and heating by supernova shocks and fast stellar winds. Cooling by radiative losses and free-free emission.
- Collisional ionization equilibrium (CIE), with collisional ionization balancing radiative recombination. Rate coefficients from laboratory measurements, numerical work ⇒ Numerical CIE or NEI studies. (Dopita & Sutherland; Dere et al.)
- Density always lower than the critical density, but large number of cooling species, many transitions ⇒ Numerical cooling rates. (e.g. "Chianti"; Dere et al. 2009)
- Probes: (1) X-ray continuum emission; line emission/absorption.
 (2) Far-UV OVI, CIV, NV absorption against stars/quasars.

The Hot Ionized Medium: CIE and Cooling

- Cooling via metal lines at $T \le 10^7$ K, by free-free emission at $T > 10^7$ K.
- Large number of cooling species, many transitions! Many rate coefficients still unknown or inaccurate.
- Low density \Rightarrow Long cooling times (> 10⁷ years at T >~ 10⁶ K!).

The Hot Ionized Medium: CIE and Cooling

• Ionization state depends critically on the gas temperature! Crucially, again, many rate coefficients still unknown or inaccurate.

THE HOT IONIZED MEDIUM: X-RAY EMISSION

- Higher energy emission from higher temperature gas: 0.25 keV: T ~ 10⁶ K.
 - 0.75 keV: $T \sim 3 \times 10^6$ K.
 - 1.5 keV: $T \sim 6 \times 10^6$ K.
- Strongest emission at 0.25 keV!
- But absorption from cool gas ⇒ Energy-dependent mean free path.

Mean free path ~ 100 pc at 0.25 keV ~ 1 kpc at 0.75 keV ~ 4 kpc at 1.5 keV
⇒ 0.25 keV emission from Local Bubble and Galactic Halo!

(Snowden et al. 1997)

THE HOT IONIZED MEDIUM: X-RAY EMISSION

 Absorption shadow in the 0.25 keV emission detected from the 3 kpc molecular cloud ⇒ > 50% likely from the Galactic bulge.

THE HOT IONIZED MEDIUM: FAR-UV ABSORPTION

- Can be studied using lines of species with high ionization potential. Ionization potential > 100 eV ⇒ Definitely from the HIM!
- Strong OVI doublet at $\lambda 1032/\lambda 1038$; Ionization potential ~ 113 eV! Best tracer of collisionally ionized gas, T ~ 3 × 10⁵ K.
- OVI absorption detected in all directions in the Galaxy. Line widths ~ 15 km/s \Rightarrow T ~ 3 – 4 × 10⁵ K.

THE SCALE HEIGHT OF OVI ABSORPTION

- FUSE OVI survey of 148 stars!
- Subtract Local Bubble contribution and fit exponential function for the scale height ⇒ H ~ 4.6 kpc (North) H ~ 3.2 kpc (South).
 Mid-plane OVI density ~ 1.3 × 10⁻⁸ cm⁻³. (Bowen et al. 2008)
- For [O/H] ~ 5 × 10⁻⁴ & 20% of O in OVI
 ⇒ n ~ 1.3 × 10⁻⁴ cm⁻³.
 But unknown filling factor, 20 70 % ?
- Similar scale heights in other species: H ~ 5.1 kpc (SiIV) H ~ 4.4 kpc (CIV) H ~ 3.3 kpc (NV)
 (Savage et al. 2005)

LMC X-3: X-RAY EMISSION AND OVI ABSORPTION

(Yao et al. 2009)