Astronomical Techniques II Lecture 7 - *u-v* Coverage and Array Design

Divya Oberoi

IUCAA NCRA Graduate School

div@ncra.tifr.res.in

March-May 2016

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへ⊙

1/31

Response of an interferometer

• Geometric delay -
$$\tau_g = \frac{\vec{b}.\vec{s}}{c}$$

• Correlator output - $r(\tau_g) = \langle V_1(t) \ V_2(t) \rangle$
• $V_1 = v_1 \cos 2\pi\nu(t - \tau_g); \ V_2 = v_2 \cos 2\pi\nu t;$
• $r(\tau_g) = v_1 v_2 \cos 2\pi\nu \tau_g$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

2/31

Response to a Brightness distribution

•
$$dr = A(\vec{s}) B(\vec{s}) \Delta \nu \Delta \Omega \cos 2\pi \nu \tau_g$$

• $r(\tau_g) = \int_{\Omega} A(\vec{s}) B(\vec{s}) \Delta \nu \cos 2\pi \nu \tau_g d\Omega$
• $r(\tau_g) = \Delta \nu \int_{\Omega} A(\vec{s}) B(\vec{s}) \cos \frac{2\pi \nu \vec{b} \cdot \vec{s}}{c} d\Omega$

<ロト < 部ト < 言ト < 言ト 言 のへで 3/31

Phase Tracking Center

$$\vec{s} = \vec{s_0} + \vec{\sigma}$$

Figure 2-2. Position vectors used in deriving the interferometer response to a source. The source is represented by the contours of radio brightness $I(\mathbf{s})$ on the sky.

Visibility

•
$$V = |V| e^{i\phi_V} = \int_{\Omega} A_N(\vec{\sigma}) B(\vec{\sigma}) e^{-2\pi i \nu \vec{b}.\vec{\sigma}/c} d\Omega$$

• $A_N(\vec{\sigma}) = A(\vec{\sigma})/A_0$
• ...
• $r = A_0 \Delta \nu |V| \cos (2\pi \nu \frac{\vec{b}.\vec{s_0}}{c} - \phi_V)$

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > 5/31 Relates FT of *Mutal Coherence Function* to the Brightness distribution of a distant source.

Effect of bandwidth

•
$$dr = A_0 |V| \cos(2\pi\nu\tau_g - \phi_V) d\nu$$

• $r = A_0 |V| \int_{\nu_0 - \Delta\nu/2}^{\nu_0 + \Delta\nu/2} \cos(2\pi\nu\tau_g - \phi_V) d\nu$
• $r = A_0 |V| \frac{\sin \pi \Delta\nu\tau_g}{\pi \Delta\nu\tau_g} \cos(2\pi\nu_0\tau_g - \phi_V)$

<ロ > < 部 > < 言 > < 言 > こ > うへで 7/31

- \blacksquare Delay tracking automated compensation for τ_g
- Frequency Conversion (mixing) bringing the signal to an easier to handle (lower) frequency

8/31

Complex Correlator

Geometric Relationship

Geometric Relationship

■
$$\vec{D_{\lambda}} \cdot \vec{s_0} = w$$

■ $\vec{D_{\lambda}} \cdot \vec{s} = (ul + vm + wn); n = \sqrt{1 - l^2 - m^2}$
■ $d\Omega = \frac{dl \, dm}{\sqrt{1 - l^2 - m^2}}$

$$\vec{s} = \vec{s_0} + \vec{\sigma}$$

$$\implies \vec{D_\lambda} \cdot \vec{\sigma} = \vec{D_\lambda} \cdot \vec{s} - \vec{D_\lambda} \cdot \vec{s_0}$$

$$\vec{D_\lambda} \cdot \vec{s} = ul + vm + w(\sqrt{1 - l^2 - m^2})$$

$$\mathcal{V}(u, v, w) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_N(l, m) B(l, m) e^{-i2\pi [ul + vm + w(\sqrt{1 - l^2 - m^2} - 1)]} \frac{dl dm}{\sqrt{1 - l^2 - m^2}}$$

Thompson, Moran, Swenson - Chap. 3

<ロト < 部ト < 言ト < 言ト こ の < で 10/31

Small FoV approximation

•
$$w(\sqrt{1-l^2-m^2}-1) \sim -\frac{1}{2}(l^2+m^2)w << ul + vm$$

• $\mathcal{V}(u,v,w) \sim \mathcal{V}(u,v,0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_N(l,m) B(l,m) e^{-i2\pi[ul+vm]} \frac{dl \, dm}{\sqrt{1-l^2-m^2}}$

<ロ > < 部 > < 言 > < 言 > こ > うへで 11/31

Impact of the w term

• Phase error -
$$\Delta \phi = \pi w (l^2 + m^2)$$

Figure 2-10. Comparison of the w-component and the antenna spacing when the direction of the source is close to that of the baseline. This condition can occur when the source is rising or setting.

$$\begin{array}{l} \bullet \quad \frac{1}{\theta_{HPBW}} \sim \frac{b_{max}}{\lambda} \sim w_{max}; \ \theta_{HPBW} \text{- Synthesised Beam} \\ \bullet \quad \Delta \phi_{max} \sim \pi \left(\frac{\theta_F}{2}\right)^2 \frac{1}{\theta_{HPBW}}; \ \theta_F \text{ - size of the Map} \\ \end{array}$$

12/31

Earth Rotation Synthesis Geometry

Figure 2-8. As the Earth rotates, the baseline vector **b**, which represents the spacing of the two antennas, traces out a circular locus in a plane normal to the direction of declination (δ) equal to 90°. If the antennas are in an East–West line on the Earth, then the vector **b** is normal to the rotation axis.

Coordinate Frame

Figure 2-11. Coordinate system for specification of baseline parameters. X is the direction of the meridian at the celestial equator, Y is toward the East, and Z toward the North celestial pole.

Figure 4.2 Relationships between the (X, Y, Z) and (u, v, w) coordinate systems. The (u, v, w) system is defined for observation in the direction of the point S, which has hour angle and declination H and δ . As shown, S is in the eastern half of the bemisphere and H is therefore negative. The direction cosines in the transformation matrix in Eq. (4.1) follow from the relationships in this diagram. The relationship in Eq. (4.2) can also be derived if we let S represent the direction of the baseline and put the baseline coordinates (h, d) for (H, δ) .

Э

イロト 不得 とうき とうとう

 $(\delta = 90^{\circ})$ for Z may be used as in Figure 2-11. Then if L_X , L_Y , and L_Z are the corresponding coordinate differences for two antennas, the baseline components (u, v, w) are given by

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \frac{1}{\lambda} \begin{pmatrix} \sin H_0 & \cos H_0 & 0 \\ -\sin \delta_0 \cos H_0 & \sin \delta_0 \sin H_0 & \cos \delta_0 \\ \cos \delta_0 \cos H_0 & -\cos \delta_0 \sin H_0 & \sin \delta_0 \end{pmatrix} \begin{pmatrix} L_X \\ L_Y \\ L_Z \end{pmatrix}, \quad (2-30)$$

where H_0 and δ_0 are the hour-angle and declination of the phase reference position, and λ is the wavelength corresponding to the center frequency of the receiving system. The elements in the transformation matrix in Equation 2-30 are the direction cosines of the (u, v, w) axes relative to (X, Y, Z) axes: for further details see, e.g., Thompson, Moran and Swenson (1986). By eliminating

Misc. comments

- Fringe Frequency
- Locus of a u,v track
- An East-West baseline

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

17/31

- Source at $\delta_0 = 0^\circ$
- Source at $\delta_0 = 90^\circ$

Design of Arrays

- Redundancy
- Sampling in the *u*-*v* plane

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の Q @

18/31

Weighting

MWA Prototype: array configuration

MWA Prototype: instantaneous uv coverage

Instantaneous 32T uv-coverage

Oberoi, Matthews, et al

■ つへで 20/31

MWA Prototype: Rotation+Frequency synthesis

ク Q (や 21 / 31

MWA Prototype: Centaurus A

Ben McKinley and Frank Briggs et al. (2013) $\rightarrow 4$ $\equiv 4$ $\equiv 4$ $\equiv 4$ $\equiv 4$ $\approx 22/31$

ASKAP array configuration

Figure 2: Left: Layout of the 36 antennas of the initial ASKAP configuration (red dots). The blue circles have diameters of 2 and 6 km, respectively. Right: Histogram of telescope baseline lengths for the initial ASKAP configuration.

MWA uvcoverage

<ロ > < 部 > < 目 > < 目 > 目 の < で 24/31

LOFAR

LOFAR

LOFAR

ଏ ଏ 27 / 31

GMRT

Wesrterbork

Westerbork Synthesis Radio Telescope ¹¹		
Located in Westerbork, Holland		rbork, Holland
and the second	Has 14 antennas, 25m diameter	
The Statement	East-West Array	
Requires Earth Rotation Synthesis for all imaging		
	Dedicated in 1970: one of the earliest major interferometric arrays	
DE OU CHE		
	WSRT Array Design	Overhead Snapshot UV Coverage
		2 km
	- 1 km	
	-0	0
	1	-2
A STATE OF THE STATE OF		-3 ³ -2-1012km

Wesrterbork

≜ ∽ি ৭.ে 30/31

References

- Chap. 1 and 2, Synthesis Imaging in Radio Astronomy, ASPC Conf. Series Vol 6
- Chap. 2 and 4, Low Frequency Radio Astronomy
- Chap. 2 and 3, Interferometry and Synthesis in Radio Astronomy