Astronomical Techniques II
 Lecture 14 - Sensitivity and a few misc. topics

Divya Oberoi
IUCAA NCRA Graduate School
div@ncra.tifr.res.in

March-May 2016

Noise and Temperature

11 P $k_{B} T \Delta \nu$
$2 P_{a}=g^{2} k_{B} T_{a} \Delta \nu$
3 $P_{N}=g^{2} k_{B} T_{\text {sys }} \Delta \nu$
$T_{\text {sys }}=T_{\text {leak }}+T_{\text {atm }}+T_{\text {spill }}+T_{\text {loss }}+T_{\text {rec }}+T_{\text {bg }}$
Everything but the target source
$4 P_{a}=\frac{1}{2} g^{2} \eta_{a} A S \Delta \nu=g^{2} k_{B} K S \Delta \nu$
$5 K=\frac{\eta_{a} A}{2 k_{B}}\left(K J^{-1}\right)$ - Flux collecting ability of an antenna
6 System equivalent flux density - SEFD $=\frac{T_{\text {sys }}}{K}$

Sensitivity of a 2 element interferometer

$\mathbb{1}<P_{i}>=a_{i}<\left(s_{i}+n_{i}\right)^{2}>=a_{i}\left[<s_{i}>^{2}+<n_{i}>^{2}\right]$
$\mathbf{2}<P_{i}>=g_{i}^{2} k_{B}\left(T_{a i}+T_{\text {sys } i}\right) \Delta \nu$
$\mathbf{3}<P_{i}>=g_{i}^{2} k_{B}\left(K_{i} S_{T}+T_{\text {sys } i}\right) \Delta \nu$
$4<P_{i j}>=\frac{g_{i} g_{j}}{\eta_{s}} \sqrt{K_{i} K_{j}} k_{B} \Delta \nu S_{c}$

Sensitivity of a 2 element interferometer

1 SNR - ratio of DC component to the RMS fluctuations of the correlator output
2. $\Delta S_{i j}=$

$$
\frac{1}{\eta_{s} \sqrt{2 \Delta \nu \tau_{a c c}}} \sqrt{S_{c}^{2}+S_{T}^{2}+S_{T}\left(\frac{T_{\text {sys } i}}{K_{i}}+\frac{T_{\text {sys } j}}{K_{j}}\right)+\frac{T_{\text {sys } i} T_{\text {sys } j}}{K_{i} K_{j}}}
$$

1 Assumes a square bandpass, but can be generalized to an arbitrary bandpass

Sensitivity of a 2 element interferometer

1 Weak source case $S_{T} \ll \frac{T_{\text {sys }}}{K}$

$$
\Delta S_{i j}=\frac{1}{\eta_{s}} \sqrt{\frac{T_{\text {sys } i} T_{\text {sys } j}}{2 \Delta \nu \tau_{\text {acc }} K_{i} K_{j}}}=\frac{1}{\eta_{s}} \sqrt{\frac{S E F D_{i} S E F D_{j}}{2 \Delta \nu \tau_{\text {acc }}}}
$$

2 Strong source case $S_{T} \gg \frac{T_{\text {sys }}}{K}$

$$
\Delta S_{i j}=\frac{S_{T}}{\eta_{s} \sqrt{2 \Delta \nu \tau_{a c c}}}
$$

1 Usually $S_{T} \gg S_{C}$

Amplitudes and Phases

\| $S_{m}=\sqrt{S_{R}^{2}+S_{l}^{2}}$

$$
\phi_{m}=\tan ^{-1} \frac{S_{I}}{S_{R}}
$$

2 Noise distribution for S_{m} - Rice distribution

$$
P\left(S_{m}\right)=\frac{S_{m}}{\Delta S^{2}} I_{0}\left(\frac{S_{m} S}{\Delta S^{2}}\right) e^{\frac{-\left(S_{m}^{2}+S^{2}\right)}{2 \Delta S^{2}}}
$$

where I_{0} is the modified Bessels function of the first kind, order zero, and S is the true amplitude.
3 Probability distribution for phase error $\phi-\phi_{m}$, where ϕ is the true phase
$P\left(\phi-\phi_{m}\right)=\frac{1}{2 \pi} e^{\frac{-S^{2}}{2 \Delta S^{2}}}\left(1+G \sqrt{\pi} e^{G^{2}}(1+\operatorname{erfG})\right.$
where $G(\theta)=\frac{S \cos \theta}{\sqrt{2} \Delta S}$

Probability distribution of measured amplitude and phase

Sensitivity for a point source

1. $\Delta I_{m}=\frac{\sqrt{2} k_{B} T_{\text {sys }}}{\eta_{c} \eta_{a} A \sqrt{N_{\text {base }} \Delta \nu N_{\text {times }}}}$
$2 \eta_{c}=\frac{\text { Sensitivity of the correlator }}{}$
$2 \eta_{c}=\overline{\text { Sensitivity of a perfect analog correlator }}$ 1 bit-64\%; 2 bit 3 level-81\%

3 $\Delta I_{m}=\frac{1}{\eta_{c}} \frac{S E F D}{\sqrt{N(N-1) \Delta \nu N_{\text {times }}}}$

Effect of the primary beam

II $I_{m}(I, m)=I(I, m) P(I, m)+N(I, m)$
2 $\frac{I_{m}(I, m)}{P(I, m)}=I(I, m)+\frac{N(I, m)}{P(I, m)}$

A formalism for 3-D imaging

1

$$
V(u, v, w)=\int_{e_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathcal{A}(I, m) I(I, m)}{\sqrt{1-I^{2}-m^{2}}}}^{e^{-2 \pi i\left(u l+v m+w\left(\sqrt{1-l^{2}-m^{2}}-1\right)\right)} d l d m}
$$

2

$$
\begin{aligned}
V(u, v, w) e^{-2 \pi i w}= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathcal{A}(I, m) I(I, m)}{\sqrt{1-I^{2}-m^{2}}} \\
& \delta\left(n-\sqrt{1-I^{2}-m^{2}}\right) \\
& e^{-2 \pi i(u l+v m+w n)} d l^{\infty} d m d n
\end{aligned}
$$

1

$$
\begin{aligned}
& I^{D(3)}= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v(u, v, w) S(u, v, w) e^{-2 \pi i w} \\
& e^{2 \pi i(u l+v m+w n)} d u d v d w
\end{aligned}
$$

$2 I^{D(3)}=I^{(3)} \star B^{D(3)}$ where,

$$
I^{(3)}(I, m, n)=\frac{\mathcal{A}(I, m) I(I, m)}{\sqrt{1-I^{2}-m^{2}}} \delta\left(n-\sqrt{1-I^{2}-m^{2}}\right)
$$

3D Imaging

Figure 19-1. The image volume and its relation to the sky brightness. (Left) Threedimensional transformation of the analytic visibility function maps the sky brightness onto a unit sphere. The dots represent these sources. (Middle) Convolution with a dirty beam results in sidelobes, shown as dashed lines, throughout the volume above and below the unit sphere. (Right) After deconvolution, the images are represented by finite-size "clean beams" on the unit sphere. The two-dimensional image is recovered by projection onto the tangent plane, indicated by vertical dashed lines.

3D Imaging

Figure 19-2. The image volume and its relation to a 'standard' two-dimensional image. (Left) At a particular time, a 'snapshot' with a two-dimensional array will project the true structure on the unit sphere onto the tangent plane with a 'ray beam', tilted at a particular angle given by the geometry of the array at the time of observation. (Right) At a later time, the array geometry has changed due to earth rotation, so the projection is now at a different angle. The apparent positions of the objects which are not located at the tangent point have changed with respect to the earlier observation.

3D Imaging

1 Faceting/Polyhedron imaging
1 Divide the image into many many facets, each small enough that the small FoV and small w term approximation are sastified within it
2 CLEAN flux is subtracted from ungridded visibilities
3 No. of facets depends upon FoV and resolution
4 100-1000 times slower than 2D imaging
2 w projection (Cornwell, Golap and Bhatnagar, 2008)
$1 V(u, v, w)=$
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{I(I, m)}{\sqrt{1-l^{2}-m^{2}}} \mathbf{G}(I, m, w) e^{-2 \pi i(u l+v m)} d l d m$,
where

$$
\mathbf{G}(I, m, w)=e^{-2 \pi i\left(w \sqrt{1-I^{2}-m^{2}}-1\right)}
$$

$2 V(u, v, w)=\hat{G}(u, v, w) \star V(u, v, w=0)$
3 Order of magnitude faster

Polarization

1 Most non-thermal processes give rise to at least partially polarised emission
2 Polarized emission is an important diagnostic of the conditions in the radio source and in the intervening medium

3
4 Additional DoF needed to describe the polarization state of radiation

5 A given probe is sensitive to only one of the orthogonal pols (linear or circular)
6 Measure both polarizations and compute all four cross-correlations

Polarization Measurements

1 Significantly harder than total intensity
1 For the vast majority of sources, fractional polarization is quite low - pushed into low SNR regimes
2 Number of DoF for imaging increase by a factor of 4
3 Calibration issues
1 Instrumental
2 Propagation
3 Need for polarization calibrator
4 Calibration tends to have a strong direction dependence (absolute, as well as within the fov)
5 Alt-Az mounts

The Hamaker-Bregman-Sault Measurement Equation

I Hamaker, Bregman and Sault - 1996-1998
2 Jones Matrix
$1 E_{0} \cos (\omega t+\phi)=E_{0} e^{i \phi}$
$\boldsymbol{2}\binom{E_{R}^{\prime}}{E_{L}^{\prime}}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{E_{R}}{E_{L}}$
(3) $J_{\text {gain }}=\left(\begin{array}{cc}g_{R} & 0 \\ 0 & g_{L}\end{array}\right)$

4 J $J_{\text {leakage }}=\left(\begin{array}{cc}1 & D_{R} \\ -D_{L} & 1\end{array}\right)$
5 J $J_{\text {rotation }}=\left(\begin{array}{cc}e^{-i \theta} & 0 \\ 0 & e^{i \theta}\end{array}\right)$
6 $J_{\text {overall }}=J_{\text {gain }} J_{\text {leakage }} J_{\text {rotation }} \ldots$

Jones matrices

11 Js are different for each antenna, and are usually time and frequency dependent

2 Provide a framework to represent propagation of signal path up to the correlator
3 Complicated systems can be handled gracefully
4 Provides an approach which allows individual effects to be modelled in different physically relevant manners
5 Matrix formulation - well suited for computational scalability and efficiency

Jone matrices - Polarimetric Equivalent

(1) $V_{i, j}^{\prime}=g_{i} g_{j}^{*} V_{i, j}$
(2 $\mathbf{A} \otimes \mathbf{B}=a_{i, j} \mathbf{B}$

$$
\left(\mathbf{A}_{i} \mathbf{B}_{i}\right) \otimes\left(\mathbf{A}_{j} \mathbf{B}_{j}\right)=\left(\mathbf{A}_{i} \otimes \mathbf{A}_{j}\right)\left(\mathbf{B}_{i} \otimes \mathbf{B}_{j}\right)
$$

3 Inputs to the correlator $-E_{i}^{\prime}=\mathbf{J}_{i} E_{i}$
4 Outputs of the correlator $-E_{i}^{\prime} \otimes E_{j}^{\prime *}$

$$
\left(\mathbf{J}_{i} E_{i}\right) \otimes\left(\mathbf{J}_{j} E_{j}\right)^{*}=\left(\mathbf{J}_{i} \otimes \mathbf{J}_{j}^{*}\right)\left(E_{i} \otimes E_{j}^{*}\right)
$$

$\boldsymbol{5} E_{i}^{\prime} \otimes E_{j}^{\prime *}=\left(\begin{array}{c}E_{R, i} E_{R, j}^{*} \\ E_{R, i} E_{L, j}^{*} \\ E_{L, j} E_{R, j}^{*} \\ E_{L, i} E_{L, j}^{*}\end{array}\right)$
$\boldsymbol{1}\left\langle E_{i}^{\prime} \otimes E_{j}^{\prime *}\right\rangle=\left(\begin{array}{l}V_{R R, i j} \\ V_{R L, j j} \\ V_{L R, i j} \\ V_{L L, i j}\end{array}\right)$
[$V_{i j}^{\prime}=\left(\mathbf{J}_{i} \otimes \mathbf{J}_{j}^{*}\right) V_{i j}-V_{i j}$ - Coherency vector
3 Calibration requires estimating the different J_{i} s and applying the inverse matrix to the measured Coherency vector

Relationship with Stokes vectors

$\boldsymbol{1} V_{S}=\left(\begin{array}{c}V_{l} \\ V_{Q} \\ V_{U} \\ V_{V}\end{array}\right)$ - Stokes Visibility Vector
$2 V_{i j}=\mathbf{S} V_{S, i j}$
$3 V_{i j}^{\prime}=\left(\mathbf{J}_{i} \otimes \mathbf{J}_{j}\right) \mathbf{S} V_{S, i j}$
$4 \mathbf{S}_{\text {circ }}=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & i & 0 \\ 0 & 1 & -i & 0 \\ 1 & 0 & 0 & -1\end{array}\right) \quad \mathbf{S}_{\text {linear }}=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & i \\ 0 & 0 & 1 & -i \\ 1 & -1 & 0 & 0\end{array}\right)$

