Astronomical Techniques II Lecture 9 - Calibration and Imaging

Divya Oberoi

IUCAA NCRA Graduate School div@ncra.tifr.res.in

March-May 2015

Calibration Framework

$$1 \tilde{V}_{i,j}(t) = \mathcal{G}_{i,j}(t) V_{i,j}(t) + \epsilon_{i,j}(t) + \eta_{i,j}(t)$$

- **11** $G_{i,j}(t)$ baseline based complex gain
- $\mathbf{2}$ $\epsilon_{i,j}(t)$ baseline based complex offset
- $\mathfrak{J}_{i,j}(t)$ Gaussian random complex noise

Antenna based calibration

1
$$G_{i,j}(t) = g_i(t) g_j^*(t) = a_i(t)a_j(t)e^{i(\phi_i(t)-\phi_j(t))}$$

- 2 No. of constraints $\sim 2 \times N(N-1)/2$
- **3** No. of independent DoF $\sim 2N$
- 4 Vastly over determined problem
- 5 Assumptions
 - 1 All/most Data corruption happens before correlation
 - **2** Linear regime $\implies g_i(t)$ s are independent of $V_{i,j}(t)$
 - 3 One $g_i(t)$ specifies an antenna \implies direction independent
 - 4 Availability of a *perfect* calibrator

Linearity of GMRT 327 MHz front-end

Delay Calibration

$$V_{i,j}(t) = \int_0^\infty \left(\int_{-\infty}^\infty \int_{-\infty}^\infty A_{\nu}(l,m) B_{\nu}(l,m) e^{-2\pi i \nu \tau_g} \right) dl dm$$

$$e^{2\pi i \nu \Delta \tau_r} \mathcal{G}_{i,j}(t,\nu) d\nu$$

- 2 Residual delay gives rise to a phase ramp $\Delta \phi = 2\pi \Delta \nu (\tau_g \Delta \tau_r)$
- $oldsymbol{\Delta}\phi$ has contributions from
 - **1** the geometric delay (can be corrected precisely only one direction the *phase center*)
 - 2 the fixed delay due to cables and electronics etc.

Time and Antenna locations

$$\begin{aligned} & \phi_{g} = 2\pi\nu\tau_{g} = 2\pi w = \\ & \frac{2\pi}{\lambda} \left(L_{x} \cos H \cos \delta - L_{y} \sin H \cos \delta + L_{z} \sin \delta \right) \end{aligned}$$

$$\Delta \phi_g = \frac{2\pi}{\lambda} (\Delta L_x \cos H \cos \delta - \Delta L_y \sin H \cos \delta + \Delta L_z \sin \delta + \Delta \alpha \cos \delta (L_x \sin H + L_y \cos H) + \Delta \delta (-L_x \cos H \sin \delta + L_y \sin H \sin \delta + L_z \cos \delta))$$

Reduce $\Delta \phi_g(t)$ to (much) less than 1 radian over a characteristic time scale

Time scales

- Time scale for calibration
 - $oldsymbol{1}$ < than the time scale over which ϕ_{sys} varies significantly
- **2** Time scale for integration over $V_{i,j}(t)$
 - f 1 < than the time scale over which ϕ_{source} varies significantly
 - 2 Includes contributions from propagation effects

Propagation effects due to the atmosphere

- Ionosphere at low frequencies, and Troposphere at high frequencies
- Absorption (Emission) by the medium attenuation (distortion) in amplitude
- 3 Distortion of the phase
- **4** Variability $\mathcal{P}(x, y, \theta, \phi, t)$
 - 1 Large scale changes (e.g. diurnal variation)
 - 2 Small scale changes (e.g. turbulence)

Ionospheric Calibration regimes

Figure 1. Illustration of the 4 ionospheric calibration regimes into which a low-frequency array can fall. The quantities A, V and S are, respectively, the array size on the ground, the field of view at ionospheric heights, and the scale size of ionospheric irregularities. Regimes 1 and 2 (top), featuring narrow fields of view, are readily dealt with using conventional self-calibration. Regime 3 can be handled by modelling the distortions as position-dependent refractive shifts, a technique currently in use for VLA 74 MHz data reduction. Regime 4, which will be inhabited by the UMA, requires a new approach to calibration, which in turn demands careful attention to array design and configuration.

Direction Dependent Effects

- Instrumental Departures of individual primary beams from the reference model
 - 1 Mechanical deficiencies
 - 2 Residual pointing offsets
 - usually stable or change in a predictable manner
- 2 Natural Effects of propagation through the atmosphere ionosphere, troposphere $(\mathcal{F}(x,y,\theta,\phi,t))$
- Image plane effects

Direction Dependent Effects...

- Taking DDEs into account
 - Account for differences between beams of different antennas
 - 2 Need to be taken into account on a per visibility basis
 - 3 Current approach perturbation theory based
 - 4 Enromous increase in computational complexity
 - 5 Possible in research labs, but not in practise yet

Bandpass calibration

- Delay calibration removes any signal path (delay) differences across individual signal paths - pure phase ramps
- **2** Take into account changes in antenna gain with frequency $G_{i,j}(\nu) = g_i(\nu) g_i^*(\nu)$

Bandpass Amplitudes

Bandpass Phases

Calibration Model

- **1** $g_i(\nu, t) = g_i(\nu) g_i(t)$
- **2** $g_i(\nu)$ **Bandpass** varies slowly needs to be calibrated infrequently typically at the start and end of an observing run
- $g_i(t)$ **Gain** varies faster needs to be calibrated more frequently typically every 30 min to an hour
 - Flux calibration (amplitude) stable and usually done at the start and end of an observation
 - 2 Phase calibration variable,

Test signals in the sky

- 1 Accurately known positions in the sky
- 2 Not significantly variable
- 3 Known and simple spectra
- 4 Lie in comparatively 'empty' fields, no strong 'confusing' sources nearby
- **5** Firm prediction of $V_{i,j}(\nu,t)$

- Flux calibration
 - 1 Stable, regularly monitored fluxes with accurate radiometers
 - Unresolved, or a good model for the source
 - Usually quite a strong source
 - 4 Primary flux calibrators 3C48, 3C147, 3C286 and 3C295
- 2 Bandpass calibration
 - Strong source
 - 2 Source structure is less important
- 3 Phase calibration
 - 1 Unresolved source close to the target source

Closure Quantities - How good is your calibration?

1
$$G_{i,j}(t) = g_i(t) g_j^*(t) g_{i,j}(t)$$

1
$$A_{i,j}(t) = a_i(t) a_j(t) a_{i,j}(t)$$

$$\tilde{\phi}_{i,j}(t) = \phi_i(t) - \phi_j(t) + \phi_{i,j}(t)$$

2 Closure Amplitude (for a point source of flux S)

$$2 a_{i,j} = \frac{\tilde{A}_{i,j}}{a_i a_i S}$$

3 Closure Phase

Beamwidth vs Freq.

Impact of Tracking errors

Impact of Tracking errors

GMRT Tracking errors

Perytons at Parkes - 27 yr old Mircowaves!

Table 1. Properties of the perytons from January 2015

Date (dd-mm-yy)	Time (UTC)	$_{ m (pc~cm^{-3})}^{ m DM}$	DM error	S/N (beam 01)	Width (ms)	Telescope Azimuth (deg)	Telescope Elevation (deg)
2015-01-19	00:39:05	386.6	1.7	24.8	18.5	10.7	75.3
2015-01-22	00:28:33	413.8	1.1	42.5	18.5	73.9	36.2
2015-01-23	03:48:31	407.4	1.4	10.6	18.5	323.2	40.2

Figure 1. The time-frequency structure of the three January perytons. In the case of events on 2015-01-19 and 2015-01-23 the summed 13-beam data is shown. For 2015-01-22 only beam 01 is plotted as the outer beam data was not recorded to disk.

Petroff et al., 2015