Astronomical Techniques II Lecture 2 - Single Dish Astronomy

Divya Oberoi

IUCAA NCRA Graduate School div@ncra.tifr.res.in

March-May 2015

Brightness

Assumption

- No absorption, emission, scattering or any other propagation effect along the path, or propagation through empty space
- Geometric optics

Brightness - $B(\theta, \phi, \nu, t)$

- Units $W m^{-2} sr^{-1} Hz^{-1}$
- AKA Surface Brightness, Specific Intensity or Spectral Radiance
- Conserved along a ray in empty space

Power received at a detector

$$dW = B(\theta, \phi, \nu) \cos\theta dA \ d\Omega \ d\nu$$

$$dW - W$$

$$B(\theta, \phi) - W \ m^{-2} \ sr^{-1} \ Hz^{-1}$$

Practical quantitative definition

$$B(\theta, \phi, \nu) = \frac{dW}{d\Omega \cos\theta dA \ d\nu}$$

- Intrinsic property of the source
- Independent of the distance from the source (ONLY for a resolved object)
- Can be thought of as energy *received* at the detector OR as energy *emitted* by the source.

Total Intensity

Total Intensity - Specific Intensity integrated over frequency

Conservation of Brightness applies here as well

Example: Looking through a telescope

Flux Density, S_{ν}

- Total spectral power received from a source by a detector of unit area.
- $\bullet S_{\nu} = \int_{Source}^{\bullet} B(\theta, \phi, \nu) \cos\theta \ d\Omega$
- For a source with a well defined solid angle
- Unit $W m^{-2} Hz^{-1}$
- 1 Jansky $(Jy) = 10^{-26} W m^{-2} Hz^{-1}$

Flux Density, S_{ν}

- Not an intrinsic property of the source dependent on the distance to the source
- The $cos\theta$ is \sim 1.0 if angular size <<1 rad
- Useful for compact (unresolved) sources

Luminosity

Spectral Luminosity

- \blacksquare Total power radiated by the source per unit bandwidth at ν
- $L_{\nu} = 4\pi \ d^2 \ S_{\nu}$
- Property of the source
- Involves *d*, the distance to the source!

Bolometric Luminosity

- Total power radiated by the source integrated over the entire spectrum

A Quick Application

Assume the Sun to be blackbody at 5800 K. What is the specific intensity of the Sun at $\nu=10\,\text{GHz}$? What is the flux density of the Sun measured at Earth

- Verify if Rayleigh Jeans law is applicable
- **2** Use it to compute B_{ν}
- 3 To get S_{ν} , compute the angular size of the Sun. Assume the Sun to be a disc of uniform *Brightness* and integrate over it.

How will B_{ν} and S_{ν} change if they are measured from Mars, rather than the Earth?

Submit your solution in the next class!

Gain of an Antenna, $G(\theta, \phi)$

$$G(\theta, \phi) = \frac{Power \ transmitted \ towards \ (\theta, \phi) \ (per \ unit \ solid \ angle)}{Power \ transmitted \ by \ an \ isotropic \ antenna \ (per \ unit \ solid \ angle)}$$

- Dimensionless
- Measure of how *directional* an antenna is
 - Gain of an isotropic antenna is 1.0
- Usually expressed in dB, i.e. $G(dB) = 10 \times log_{10}G$
- For a lossless antenna, same as the *Directivity* as well.

Gain of an Antenna, $G(\theta, \phi)$

Conservation of Energy (for a lossless antenna)

$$\implies <\mathit{G}> = rac{\displaystyle\int_{\mathit{sphere}}^{\mathit{GS}} \mathit{G}(heta,\phi) \; d\Omega}{\displaystyle\int_{\mathit{sphere}}^{\mathit{d}} d\Omega} = 1$$

$$lacksquare \Delta\Omega \sim rac{4\pi}{G_{max}}$$

14 / 23

A Measured Antenna Pattern (ATA)

Figure 1: Two cuts through the primary beam pattern of one of the ATA dishes.

Antenna Pattern of a Patch Antenna

Beam shape of Arecibo Antenna

Fig. 4.—Normalized power pattern P_{c_1} and also the integrand θP_{c_2} for (1) the standard model of a uniformly illuminated 10% blocked aperture (solid, dash-dot lines), and (2) its Gaussian-thic counterpart (dash, dash-dot-dot-dot lines). The squares and diamonds are representative data points for P_{c_2} from the LBW feed at 1415 MHz, obtained by averaging different cuts in one single observing pattern.

A more sophisticated perspective

 $E(\psi,\eta)$ - Aperture illumination (electric field distribution across the aperture)

 ψ and η - aperture coordinates

 $U(\alpha,\beta)$ - Far field electric field (diffraction pattern) α and β - directions relative to the optical axis of the telescope

 $E(\psi,\eta)$ and $U(\alpha,\beta)$ form a Fourier transform pair

Normalised Antenna Power Pattern, $P(\theta, \phi, \nu)$

$$P(\theta, \phi, \nu) = \frac{G(\theta, \phi, \nu)}{G(\theta_0, \phi_0, \nu)}$$

where θ_0 and ϕ_0 define the optical axis of the aperture.

- lacksquare For an isotropic antenna $A_{\it eff}=rac{\lambda^2}{4\pi}$

Gain and Aperture

$$G = rac{4\pi \; A_{eff}}{\lambda^2}, \; A_{eff} - \; ext{Effective collecting area}$$

 $A_{eff} = \eta A_{geom}$

- \blacksquare η typically in the range 0.35 0.7
- GMRT: $\eta \sim$ 0.65–0.60 in the range 150 610 MHz, and \sim 0.4 at 1400 MHz.
- J-VLA: η peaks at 3 GHz at \sim 0.62, and drops to \sim 0.45 at 1.4 GHz and \sim 0.34 at 45 GHz
- lacksquare ALMA: $\eta\sim$ 0.75–0.45 in the range 35 850 GHz

Spectral Power

$$W = \int_{
u} \int_{aperture} \int_{\Omega} B(\theta, \phi,
u) \cos\theta dA \ d\Omega \ d
u \ W$$
 $w_{
u} = \int_{aperture} \int_{\Omega} B(\theta, \phi,
u) \cos\theta dA \ d\Omega \ W \ Hz^{-1}$ $w_{
u} = A_{eff} \int_{\Omega} B(\theta, \phi,
u) \cos\theta \ d\Omega \ W \ Hz^{-1}$ $w_{
u} = A_{eff} \int_{\Omega} B(\theta, \phi,
u) \ P(\theta, \phi,
u) \ d\Omega \ W \ Hz^{-1}$

For a uniform source of Brightness B_u , this becomes $w_{\nu} = \frac{1}{2} A_{eff} B_u \Omega_A W Hz^{-1}$

The image to keep in mind

References and Pre-requisites

- References:
 - Kraus Radio Astronomy (2nd ed): Sec 3.1–3.5
- Pre-requisites:
 - Concepts of blackbody radiation, Planck's law, Rayleigh-Jeans law
 - Concepts of random variables and statistics