Astronomical Techniques II
 Lecture 2 - Single Dish Astronomy

Divya Oberoi
IUCAA NCRA Graduate School
div@ncra.tifr.res.in

March-May 2015

Brightness

Assumption
■ No absorption, emission, scattering or any other propagation effect along the path, or propagation through empty space

- Geometric optics

Brightness - $B(\theta, \phi, \nu, t)$

- Units - W m ${ }^{-2} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}$
- AKA Surface Brightness, Specific Intensity or Spectral Radiance
■ Conserved along a ray in empty space

Power received at a detector

$$
\begin{aligned}
& d W=B(\theta, \phi, \nu) \cos \theta d A d \Omega d \nu \\
& d W-W \\
& B(\theta, \phi)-W m^{-2} s r^{-1} \mathrm{~Hz}^{-1}
\end{aligned}
$$

Practical quantitative definition

$$
B(\theta, \phi, \nu)=\frac{d W}{d \Omega \cos \theta d A d \nu}
$$

- Intrinsic property of the source
- Independent of the distance from the source (ONLY for a resolved object)
- Can be thought of as energy received at the detector OR as energy emitted by the source.

Total Intensity

Total Intensity - Specific Intensity integrated over frequency
Conservation of Brightness applies here as well
Example: Looking through a telescope

Flux Density, S_{ν}

■ Total spectral power received from a source by a detector of unit area.

- $S_{\nu}=\int_{\text {Source }} B(\theta, \phi, \nu) \cos \theta d \Omega$

■ For a source with a well defined solid angle

- Unit - $W \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$

■ 1 Jansky $(J y)=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$

Flux Density, S_{ν}

- Not an intrinsic property of the source - dependent on the distance to the source
- The $\cos \theta$ is ~ 1.0 if angular size $\ll 1 \mathrm{rad}$
- Useful for compact (unresolved) sources

Luminosity

Spectral Luminosity

- Total power radiated by the source per unit bandwidth at ν
- $L_{\nu}=4 \pi d^{2} S_{\nu}$
- Property of the source
- Involves d, the distance to the source!

Bolometric Luminosity

- Total power radiated by the source integrated over the entire spectrum
- $L_{b o l}=\int_{0}^{\infty} L_{\nu} d \nu$

A Quick Application

Assume the Sun to be blackbody at 5800 K . What is the specific intensity of the Sun at $\nu=10 \mathrm{GHz}$? What is the flux density of the Sun measured at Earth

1 Verify if Rayleigh Jeans law is applicable
2 Use it to compute B_{ν}
3 To get S_{ν}, compute the angular size of the Sun. Assume the Sun to be a disc of uniform Brightness and integrate over it. How will B_{ν} and S_{ν} change if they are measured from Mars, rather than the Earth?
Submit your solution in the next class!

Gain of an Antenna, $G(\theta, \phi)$

```
\(G(\theta, \phi)=\)
    Power transmitted towards \((\theta, \phi)\) (per unit solid angle)
Power transmitted by an isotropic antenna (per unit solid angle)
```

- Dimensionless
- Measure of how directional an antenna is
. Gain of an isotropic antenna is 1.0
- Usually expressed in $d B$, i.e. $G(d B)=10 \times \log _{10} G$
- For a lossless antenna, same as the Directivity as well.

Gain of an Antenna, $G(\theta, \phi)$

- Conservation of Energy (for a lossless antenna)
$\Longrightarrow<G>=\frac{\int_{\text {sphere }} G(\theta, \phi) d \Omega}{\int_{\text {sphere }} d \Omega}=1$
- $\int_{\text {sphere }} d \Omega=4 \pi$
$\Longrightarrow \int_{\text {sphere }} G(\theta, \phi) d \Omega=4 \pi$
- $\Delta \Omega \sim \frac{4 \pi}{G_{\max }}$

Directivity of a Parabolic Dish

Directivity of a Parabolic Dish

Directivity of a Parabolic Dish

Antenna Power Response at 1 GHz
25-meter diameter, uniform illumination

Directivity of a Parabolic Dish

A Measured Antenna Pattern (ATA)

Figure 1: Two cuts through the primary beam pattern of one of the ATA dishes.

Antenna Pattern of a Patch Antenna

Beam shape of Arecibo Antenna

Fig. 4.- Normalized power pattern P_{n}, and also the integrand θP_{n}, for (1) the standard model of a uniformly illuminated 10% blocked aperture (solid, dash-dot lines), and (2) its Ganssian-fit counterpart (dash, dash-dot-dot-dot lines). The squares and diamonds are representative data points for P_{n} from the LBW feed at 1415 MHz , obtained by averaging different cuts in one single observing pattern.

A more sophisticated perspective

$E(\psi, \eta)$ - Aperture illumination (electric field distribution across the aperture)
ψ and η - aperture coordinates
$U(\alpha, \beta)$ - Far field electric field (diffraction pattern) α and β-directions relative to the optical axis of the telescope
$E(\psi, \eta)$ and $U(\alpha, \beta)$ form a Fourier transform pair

Normalised Antenna Power Pattern, $P(\theta, \phi, \nu)$

$P(\theta, \phi, \nu)=\frac{G(\theta, \phi, \nu)}{G\left(\theta_{0}, \phi_{0}, \nu\right)}$
where θ_{0} and ϕ_{0} define the optical axis of the aperture.

- $\int_{\text {sphere }} P(\theta, \phi, \nu) d \Omega=\Omega_{A}$
- $\lambda^{2}=\Omega_{A} \times A_{\text {eff }}$
- For an isotropic antenna $A_{\text {eff }}=\frac{\lambda^{2}}{4 \pi}$

Gain and Aperture

$G=\frac{4 \pi A_{\text {eff }}}{\lambda^{2}}, A_{\text {eff }}-$ Effective collecting area
$A_{\text {eff }}=\eta A_{\text {geom }}$

- η typically in the range $0.35-0.7$

■ GMRT: $\eta \sim 0.65-0.60$ in the range $150-610 \mathrm{MHz}$, and ~ 0.4 at 1400 MHz .
■ J-VLA: η peaks at 3 GHz at ~ 0.62, and drops to ~ 0.45 at 1.4 GHz and ~ 0.34 at 45 GHz
■ ALMA: $\eta \sim 0.75-0.45$ in the range $35-850 \mathrm{GHz}$

Spectral Power

$$
\begin{aligned}
& W=\int_{\nu} \int_{\text {aperture }} \int_{\Omega} B(\theta, \phi, \nu) \cos \theta d A d \Omega d \nu W \\
& w_{\nu}=\int_{\text {aperture }} \int_{\Omega} B(\theta, \phi, \nu) \cos \theta d A d \Omega W \mathrm{~Hz}^{-1} \\
& w_{\nu}=A_{\text {eff }} \int_{\Omega} B(\theta, \phi, \nu) \cos \theta d \Omega W \mathrm{~Hz}^{-1} \\
& w_{\nu}=A_{\text {eff }} \int_{\Omega} B(\theta, \phi, \nu) P(\theta, \phi, \nu) d \Omega W \mathrm{~Hz}^{-1}
\end{aligned}
$$

For a uniform source of Brightness B_{u}, this becomes $w_{\nu}=\frac{1}{2} A_{\text {eff }} B_{u} \Omega_{A} \quad W \mathrm{~Hz}^{-1}$

The image to keep in mind

References and Pre-requisites

- References:

■ Kraus - Radio Astronomy (2nd ed): Sec 3.1-3.5

- Pre-requisites:
- Concepts of blackbody radiation, Planck's law, Rayleigh-Jeans law
- Concepts of random variables and statistics

