
A basic radio telescope

✦ Single dish
✦ Feed
✦Receiver (FE)
✦Mount
✦Transmission lines
✦Receiver (BE)
✦ABC

✦ Single dish
✦Mechanical
✦Altitude drive
✦Azimuth drive



Fourier pairs



Antenna performance

✦ FT of unblocked aperture
✦ FT of legs-blockage
✦ FT of feed-blockage

✦ Sum of all FTs

✦  �η = ηreflectorηblockageηfeed spillover effηmisc



Power vs. temperature

✦The power level of the radiation (� ) can be traced from its reception 
by the feed, through the receiving system. The “signal” is generally 
noise-like (white noise, containing all frequencies in the band). For 
convenience, we often consider the equivalent noise temperature 
corresponding to the power level
✦ �
✦ although we also refer to the power level in decibel milliwatts 

[dBm], we can consider the power received by the antenna,
✦ �
✦where  is the antenna temperature, and the output power of the 

receiver as 
✦ �
✦  is the system temperature, and represents the added noise of the 

system. It is a figure of merit, and should be kept as low as possible.
✦ �  

✦To see how important the unwanted  is, let's compare it with a 
typical signal. Say we have a point source of flux density 1 Jy [= 1
! ]. If observed with a radio telescope of 10 �  
diameter, what is � ?

W

P = kTΔν

Pa = kTaΔν
Ta

Ptot = Pa + Psys ⟹ Ttot = Ta + Tsys
Tsys

Ttot = [Tbg + Tsky + Tspill] + [Tloss + Tcal + Trx]

Tsys

= 10−26Wm−2Hz−1 m
Ta



Total system temperature

✦An actual system is just a linear chain of 2-port devices,
✦where the input (i.e. from the feed) is shown as � , and each two-port 

device is labeled with its noise temperature and gain.
✦ Some of the gains may be less than one (i.e. a lossy cable or 

attenuator). The power output of the whole system will be
✦ �
✦And the corresponding system temperature is
✦ �
✦ You can see that the external temperature (the antenna temperature) 

just gets added to by all of the noise temperatures of the following 
devices, but each stage after the first stage gets divided by the total 
gains of the preceding stages. This makes the first amplifier stage all-
important.

T0

P = G1G2G3 . . . GnkT0Δν + G1G2G3 . . . GnkT1Δν + G2G3 . . . GnkT2Δν + G3 . . . GnkTnΔν + . . .

Tsys = T0 + T1 + T2/G1 + T3/(G1G2) + . . . + Tn /(G1G2 . . . Gn−1)



FT relationship and inverse

✦A point in the �  plane a distance �  from origin has components �  and � .
✦ In RA, this corresponds to a single baseline, or pair of antennas.
✦The FT of this sampling corresponds to fringes in the sky plane, with 

angular separation �  fringe-spacing.
✦The two corresponding angular coordinates are  and , which are the 

fringe separations in the �  and �  angular directions. 

u, v s u v

θ =
θl θm

l m



Objective

✦A more formal approach to radio interferometry using coherence 
functions
✦A complementary way of looking at the technique 
✦ Be clear about simplifying assumptions

✦Relaxing the assumptions
✦How does a radio interferometer work?
✦ Follow the signal path
✦Technologies for different frequency ranges



Young’s double slit experiment

✦ Fringes
✦Angular spacing of fringes
✦  �

✦ Familiar from optics
✦ Essentially the way that 

astronomical interferometers 
work at optical and IR 
wavelengths 

✦Direct detection

λ /d



Build up of an interferometer from many slits



But this is not how radio interferometer work in practice

✦The two techniques are closely related, and it often helps to think 
of images as built up of sinusoidal “fringes” 

✦ But radio interferometers collect radiation (“antenna”), turn it into 
a digital signal (“receiver”) and generate the interference pattern in 
a special-purpose computer (“correlator”) 

✦How does this work? 
✦ I find it easiest to start with the concept of the mutual coherence 

(or correlation) of the radio signal received from the same object at 
two different places 

✦No proofs, but I will try to state the simplifying assumptions 
clearly.



✦Astrophysical source, location � , generates a time-varying electric 
field � . EM wave propagates to us at point � . 

✦ In frequency components: �

✦The coefficients �  are complex vectors (amplitude and phase; 
two polarisations) 

✦ Simplification 1: radiation is monochromatic

✦ �

✦where �  is the propagator 
✦ Simplification 2: scalar field (ignore polarisation for now) 
✦ Simplification 3: sources are all very far away

✦This is equivalent to having all sources at a fixed distance – 
there is no depth information

R
E(R, t) r

E(R, t) = ∫ Eν(R)exp(2πiνt)dν

Eν(R)

Eν(r) = ∫ ∫ ∫ Pν(R, r)Eν(R)dxdydz

Pν(R, r)

The ideal interferometer 



The ideal interferometer 

✦ Simplification 4: space between us and the source is empty
✦ In this case, the propagator is quite simple (Huygens’ Principle), so

✦  �
✦ and �  is the element of area at distance �

✦We can measure is the correlation of the field at two different  
observing locations. This is
✦  �

✦where �  denotes an expectation value and �  means complex 
conjugation. 

✦ Simplification 5: radiation from different astronomical objects is 
not spatially coherent ('random noise’)

✦  �  unless �

Eν(r) = ∫ Eν(R)
exp(2πi |R − r|

c )

R − r
dA

dA |R|

Cν(r1, r2) = < Eν(r1)E⋆
ν (r2) >

< > ⋆

Eν(R1)E⋆
ν (R2) > = 0 R1 = R2



Spatial and temporal coherence

✦ Plane wave (spatially coherent)
✦Varying profile (spatially coherent)
✦ Partially coherent

✦Most radio sources, like 
incandescent-bulb are broad-band, 
incoherent emitters



Coherence and correlation

✦The IF signal from two antennas/ 
receivers looks like a noise signal. 
Part of the waveform is really 
signal from the source, and part of 
it (perhaps the largest part) is 
noise.
✦ If they both look the same, how 

do we tell the difference?
✦The source signal will be 

correlated between the two 
antennas, while the noise 
signal will not.



Coherence and correlation

✦Two voltage waveforms, with 
phase 30 degrees, with the 
waveform for antenna 1 shifted by 
800 time samples.
✦The noise level is 1/5 of the 

signal level in this example. The 
waveforms appear to have no 
relation to one another, but 
when correlated they give the 
plot in the third panel (cosine 
channel), which shows a good 
correlation (spike) at a time lag 
of 800 samples.

✦ Shifting the antenna 1 
waveform by 90 degrees and 
performing the correlation 
again gives the result shown in 
the bottom panel (sine channel).

✦The combination of the sine 
and cosine channels gives an 
amplitude of 0.268 and phase 
of 30.2 degrees. The correct 
values are 0.25 and 30 degrees.



Coherence and correlation

✦Two voltage waveforms, with the 
same characteristics as for earlier 
Figure, but now the noise level 5 
times higher and is now equal to 
the signal level.
✦ Because the noise is 

uncorrelated, the correlated 
signal is hardly affected, and
✦ gives and amplitude of 0.245 

and phase of 30.83 degrees, 
compared to the correct values 
of 0.25 and 30 degrees.



The ideal interferometer

✦Now write �  and �  (the observed 
intensity).  Using the approximation of large distance to the 
source again,

✦  �
✦  (�  is an element of solid angle)

✦  � , the spatial coherence function, depends only on 
separation, � , so we can keep one point fixed and move the 
other around. 

✦ It is a complex function, with real and imaginary parts, or an 
amplitude and phase.

✦An interferometer is a device for measuring the spatial coherence 
function

s = R /|R| Iν(s) = |R|2 < |Eν(s)|2 >

Cν(r1, r2) = ∫ Iμ(s)exp(
−2πiνs . (r1 − r2)

c
))dΩ

dΩ
Cν(r1, r2)

r1 − r2



(u,v,w) coordinates

✦We use a coordinate system � , where �  is along a reference 
direction to the phase centre and (u,v) are in the orthogonal plane, 
with  East-West and  North-South (the  plane)

✦ In this system:
✦ – Baseline vector between antennas

✦ �  (measure in wavelengths)
✦ – Unit vector to the phase centre �
✦ – Unit vector to some point in the field �  with 
� .

(u, v, w) w

u v (u, v)

b = (λu, λv, λw)
s0 = (0,0,1)

s = (l, m, n),
l2 + m2 + n2 = 1



The Fourier relation

✦ Simplification 6: receiving elements have no direction dependence
✦ Simplification 7: all sources are in a small patch of sky
✦ Simplification 8: we can measure at all values of  and at all 

times
✦Choose coordinate system so that the phase tracking centre has 
�  as in the previous slide

✦  �

✦  �
✦This is a Fourier transform relation between the modified complex 

visibility �  (the spatial coherence function with separations 
expressed in wavelengths) and the intensity �

✦ “The Fourier Transform of the spatial coherence function of an 
incoherent source is equal to its complex visibility”:
✦  the van Cittert – Zernike Theorem

r1 − r2

s0 = (0,0,1)
C(r1, r2) = exp(−2πiw)V′�ν(u, v)
V′ �ν(u, v) = ∫ ∫ Iν(l, m)exp(−2πi(ul + vm))dldm

V′ �ν
Iν(l, m)



Fourier inversion

✦This relation can be inverted to get the intensity distribution, 
which is what we want 

✦  �
✦This is the fundamental equation of synthesis imaging 
✦  Interferometrists love to talk about the �  plane. Remember that 
�  (and � ) are measured in wavelengths. 

✦The vector �  is the baseline

Iν(l, m) = ∫ ∫ V′�ν(u, v)exp(2πi(ul + vm))dudv

(u, v)
u, v w

b = (u, v, w) = (r1 − r2)/λ



Simplifications

✦  1. Radiation is monochromatic
✦  2. Electromagnetic radiation is a scalar field
✦  3. Sources are all very far away
✦  4. Space between us and the sources is empty 
✦  5. Radiation is not spatially coherent
✦  6. Receiving elements have no direction dependence 
✦  7. All sources are in a small patch of sky 
✦  8. We can measure all baselines at all times

False

Sometimes true

Almost always true



Simplification 1

✦Radiation is monochromatic
✦We observe wide bands both for spectroscopy (HI, molecular 

lines) and for sensitive continuum imaging, so we need to get 
round this restriction. 

✦ In fact, we can easily divide the band into multiple spectral 
channels

✦There are imaging restrictions if the individual channels are too 
wide for the field of view – wait for imaging lecture.
✦Usable field of view �
✦Not usually an issue for modern instruments, which have 

large numbers of channels

< (Δν/ν0)(l2 + m2)1/2



Simplification 2

✦Radiation is field is a scalar quantity
✦The field is actually a vector and we are interested in both 

components (i.e. its polarisation).
✦This makes no difference to the analysis as long as we measure 

two states of polarisation (e.g. right and left circular, or crossed 
linear) and account for the coupling between states.

✦Use the measurement equation formalism for this (calibration 
and polarisation lectures)

✦ Polarisation
✦Want to image Stokes parameters:
✦ I (total intensity)
✦Q,U (linear)
✦V (circular)
✦Resolve into two (nominally orthogonal) polarization states, 

either right and left circular or crossed linear.



Simplifications 3 and 4

✦ Sources are all a long way away
✦ Strictly speaking, in the far field of the interferometer,

✦ so that the distance is �  where �  is the interferometer 
baseline 

✦True except in the extreme case of very long baseline 
observations of solar-system objects

✦Radiation is not spatially coherent 
✦Generally true, even if the radiation mechanism is itself 

coherent (masers, pulsars)
✦May become detectable in observations with very high spectral 

and spatial resolution 
✦Coherence can be produced by scattering, since signals from 

the same location in a sources are spatially coherent, but travel 
by different paths through interstellar or interplanetary medium

> D2/λ D



Simplifications 5 and 6

✦ Space between us and the source is empty
✦The receiving elements have no direction-dependence 
✦Closely related and not true in general.
✦ Examples:
✦ Interstellar or interplanetary scattering
✦Tropospheric and (especially) ionospheric fluctuations which 

lead to path/phase and amplitude errors, sometimes 
seriously direction-dependent 

✦ Ionospheric Faraday rotation, which changes the plane of 
polarisation

✦High-frequency antennas are highly directional by design 
✦ Standard calibration deals with the case that there is no 

direction-dependence (i.e. each antenna has a single, time- 
variable complex gain) 

✦Direction dependence is becoming more important, especially 
for low frequencies and wide fields.



Special case: PB correction

✦ If the response of the antenna is direction-dependent,
✦ then we are measuring
✦ �  instead of �

✦ (ignore polarisation for now)
✦An easier case is when the antennas all have the same 

response 
✦ �

✦ �

✦ (we just make the standard Fourier inversion and) the divide 
by the primary beam � )

✦  �

✦ See imaging lectures

Iν(l, m)D1ν(l, m)D⋆
1ν(l, m) Iν(l, m)

Aν(l, m) = |Dν(l, m)|2

V′�ν(u, v) = ∫ ∫ Aν(l, m)Iν(l, m)exp(−2πi(ul + vm))dldm

Aν(l . m)

Iν(l, m) =
∫ ∫ V′�ν(u, v)exp(2πi(ul + vm))dudv

Aν(l, m)



Simplification 7

✦The field of view is small
✦ (or antennas are in a single plane).
✦Not always true,
✦ if not:
✦ (basic imaging equation becomes)

�
✦No longer a 2D Fourier transform, so analysis becomes more 

complicated (the “ �  term”)
✦map individual small fields (“facets”) and combine later, or
✦ � -projection
✦ See imaging lectures

V′�ν(u, v, w) = ∫ ∫ Iν(l, m)exp([−2πi(ul + vm + (1 − l2 − m2)1/2w]/(1 − l2 − m2)1/2))dldm

w

w



Simplification 8

✦We can measure the coherence function for any spacing and time 
✦ (very wrong!).

✦We have a number of antennas at fixed locations on the Earth (or in 
orbit around it)

✦The Earth rotates
✦We make many (usually) short integrations over extended periods, 

sometimes in separate observations
✦ So effectively we sample at discrete �  (and � ) positions.
✦ Implicitly assume that the source does not vary

✦Often a problem when combining observations take over a long time 
period; some sources vary much faster (e.g. the Sun)

✦Also assume that each integration (time average to get the coherence 
function) is of infinitesimal small duration.

✦ In 2D, this measurement process can be described by a sampling 
function �  which is a delta function where we have taken data 
and zero elsewhere.

✦ �  is the dirty image

✦The process of getting from �  to �  is deconvolution 
(examples in other lectures). 

✦However, perhaps better to pose the problem in a different way:
✦what model brightness distribution �  gives the best fit to the 

measured visibilities and how well is this model constrained? 

u, v w

S(u, v)

ID
ν (l, m) = ∫ ∫ V′�ν(u, v)S(u, v)exp(2πi(ul + vm))dudv

ID
ν (l, m) Iν(l, m)

Iν(l, m)


