Assignment 2 Electrodynamics and Radiative Processes I

20 marks for each question

Due on 3rd September 2019

1) Starting from Maxwell's equation write down Electric field (E) and Magnetic field (B) in terms of scalar potential (ϕ) and vector potential (A).

Write down the expression for Electric field when the field points are sufficiently far (far zone R>> λ (c/u)). Consider β <<1 and derive the value of total power emitted from a single accelerated charge q.

2) Comment on frequency dependence of Thomson scattering cross section. Consider a nebula with a radius of $2x10^{20}$ cm. The number density of charged particles in the nebula is n =10,0000. Comment on if the nebula will be optically thick or thin under Thompson scattering. At what value of n will the nebula start acting as a black body? (Ignore the contribution of medium between nebula and detector)

(3) Define $V \pm = E \pm iB$. Write Maxwell's equations with out sources in terms of V+ alone.

(4) A cube of side L contains a flat plate with variable surface charge density $\sigma=3xy$. If the plate extends from x=0 to x=L and from y=0 to y=L, what is the total electric flux through the walls of the cube.

(5) Two oscillating dipole moments (d_1 and d_2) are oriented in the vertical direction and are horizontal distance L apart. They oscilate in phase at the same frequency ω . Consider radiation at angle θ with respect to vertical and in a vertical plane containing two dipoles. Calculate power emitted per unit solid angle.

Show that when L<< λ , the radiation is same as from a single oscillating dipole of amplitude d_1+d_2 .