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Lecture	-6		
Ques,ons	raised	in	the	class		

		

1.  How	do	we	consider	the	Thomson	scaAering	by	unpolarized	light?		
	
2.		The	term	terminal	velocity	is	used	to	denote	the	constant	velocity	
aAained	aTer	the	forces	are	balanced.	In	ques,on	number	3	of	
assignment	1,	both	the	forces	are	r2	dependent,	hence	for	
accelera,on	to	be	zero,	the	rela,on	between	the	constants	must	be	
such	that			
	
Compare	the	same	with	the	terminal	velocity	in	viscous	fluid.		
@	Sukanya	



Super	Luminal	mo,on				
Apparently	faster	than	light		
mo,on	seen	in	some	radio	galaxies,		
Quasers,	blazers	etc.	
(Problem	4.7	of	R&L)		
	
These	sources	contain	a	black		
hole	responsible	for	ejec,on	of		
mass	at	high	veloci,es.		

Large	v		and		γ		>>1		

	Apparent	veloci,es	>>	c		



Picture	of	Andromeda	galaxy,		
Photons	recorded	were	emiAed	up	to	200,000	years	difference.	
You	are	seeing	photons	arriving	at	the	same	,me		
NOT	emiAed	at	the	same	,me		



Review	of	Lorentz	transforma,on	
and	four	vectors	



Special	Rela,vity	--	theory	describing	the	mo,on	of	par,cles	and	
fields	at	any	speed.		
	
Based	on	two	principles:	
	
1.	All	iner,al	frames	are	equivalent	for	all	experiments.	
	
2.	Maxwell's	equa,ons	and	the	speed	of	light	must	be	the	same	
for	all	observers.	

Special	Rela,vity		



Review	of	Lorentz	Transforma,ons	

ü  The	laws	of	nature	are	the	same	in	two	frames	of	reference	in	uniform	rela,ve		
mo,on	with	no	rota,on.	
ü  The	speed	of	light	is	c	in	all	such	frames	

Frames	K	and	K’	with	rela,ve	velocity	v	along	x	axis	

A	pulse	of	light	emiAed	at	t=0	
Each	observer	will	see	an	expanding	sphere	centered	on	its	origin	

Equa,ons	of	
expanding	sphere	

	Both	space	and	,me	are	subject	to	Lorentz	transforma,on.	



Review	of	Lorentz	Transforma,ons	

Length	contrac,on	

Time	dila,on		

The	Andromeda	paradox	 Formulated	first	by	R.	Penrose	to	illustrate	the	
apparent	paradox	of	rela,vity	of	simultaneity	

hAps://apatruno.files.wordpress.com/
2014/09/terrell.pdf	Invisibility	of	Lorentz	transform	



Transforma,ons	of	veloci,es	



Transforma,ons	of	veloci,es	



Transforma,ons	of	veloci,es	

Components	of	u	parallel	
	and	perpendicular	to	v	



Transforma,ons	of	veloci,es	
Beaming	effect	

For	θ’	=	π/2,	considering	a	photon	
	emiAed	at	right	angles	to	v	in	K’		

For	highly	rela,vis,c	speeds	γ	>>1		

Consider	photons	are	emiAed	isotropically	in	K’.	
Half	will	have	θ’	>π/2	and	other	half	will	have	θ’	<π/2		
	
In	frame	K	the	photons	are	concentrated	in	forward	direc,on	in	a	cone	of	1/γ.	
This	is	called	beaming	effect.			



Transforma,ons	of	veloci,es	
Beaming	effect	

For	θ’	=	π/2,	considering	a	photon	
	emiAed	at	right	angles	to	v	in	K’		

For	highly	rela,vis,c	speeds	γ	>>1		

Consider	photons	are	emiAed	isotropically	in	K’	
In	frame	K	the	photons	are	concentrated	in	forward	direc,on	in	a	cone	of	1/γ.	
This	is	called	beaming	effect.			

Isotropic	emission:	Rest	frame	K’	 Beamed	emission	:K	





Doppler	effect	
Consider	in	rest	frame	of	K		
a	source	emits	one	period	of	radia,on	as	it	moves	from	point	1	to	point	2	

Time	dila,on	implies,	,me	taken	to	move	from	
point	1	to	point	2	in	observer’s	frame	

Difference	in	arrival	,me	of	the		
radia,on	emiAed	at	1	and	2			

Observed	frequency			



Proper	,me	

Space	and	,me	have	different	values	in	different	frames		are	separately		
subject	to	Lorentz	transforma,on	

Some	quan,,es	that	are	same	in	all	Lorentz	frames	called	Lorentz	invariants	

Proper	,me	dτ	is	unchanged	under	Lorentz	transforma,on	
	



	Four	vectors	

One	can	find	Lorentz	transforma,on	proper,es	of	other	quan,,es	as	well.	
However	four	vectors	have	transforma,on	proper,es	iden,cal	to	co-ordinates		
of	events.	So	the	treatment	is	less	complicated.	

	quan,,es	x,y,z,t	an	be	formed	in	to	a	vector	in	four-dimensional	space	

Define	

Space-,me	is	a	four-vector:	xµ	=	[ct,	x]	
For	μ=0,1,2,3	



	Four	vectors	

Four	vectors	–Four	components	that	transform	in	a	specific	way		
																									under	Lorentz	transforma,on	
	
Length	of	Four	vectors	is	invariant	i.e.	same	in	every	iner,al	system		

Electromagne,sm	predicts	that	waves	travel	at	c	in	vacuum.	
	
Laws	of	electro	magne,sm	must	be	Lorentz	invariant.	



	Special	rela,vity	in	one	slide	

Space-,me	is	a	four-vector:	xµ	=	[ct,	x]	
	
Four-vectors	have	Lorentz	transforma,ons	between	two	
frames	with	uniform	rela,ve	velocity	v:				
	

															x’	=	γ(x	−	βct);																	ct’	=	γ(ct	−	βx)	

xµxν	=	c2t2	−	|x|2	=	c2t’2	−	|x’|2	=	s2	

Lengths	of	four	vectors	are	Lorentz	invariant	



	Charge	and	Current	densi,es	
Under	a	Lorentz	transforma,on	a	sta,c	charge	q	at	rest	becomes	a			
charge	moving	with	velocity	v.	This	is	a	current.	

A	sta,c	charge	density	ρ	at	one	frame	becomes	a	current	density	J	in	other	
	
Note:	Charge	is	conserved	by	a	Lorentz	transforma,on	
	
	
The	charge/current	four-vector	is:					
							
																																																			Jµ	=	ρdxµ/dt	=	[cρ,	J]	
	
The	full	Lorentz	transforma,on	is:		

																													J’x	=	γ(Jx	−	vρ);												ρ’	=	γ(ρ	−	v/c2	Jx)	
	
Note:		γ	factor	can	be	understood	as	a	length	contrac,on	or	,me		dila,on	
affec,ng	the	charge	and	current	densi,es		



	Electrosta,c	&	vector	poten,als	

	
Under	a	Lorentz	transforma,on	a	V	becomes	an	A:	

A	sta,c	charge	density	ρ	is	a	source	of	an	electrosta,c	poten,al	V	
A	current	density	J	is	a	source	of	a	magne,c	vector	poten,al	A	

The	poten,al	four-vector	is	



Recap			

Special	theory	of	rela,vity	

Length	contrac,on	(length	of	a	moving	rod	appears	smaller)	
	
Time	dila,on	(moving	clock	appears	slower)	

Four	vectors	

Transforma,on	of	veloci,es		
	
Addi,on	of	veloci,es		
	
Beaming	effect	
	
Energy	of	a	moving	body		

Rela,vis,c	Doppler	effect		

Proper	,me	



Recap			

Special	theory	of	rela,vity	

Length	contrac,on	(length	of	a	moving	rod	appears	smaller)	
	
Time	dila,on	(moving	clock	appears	slower)	

Four	vectors	

Transforma,on	of	veloci,es		
	
Addi,on	of	veloci,es		
	
Beaming	effect	
	
Energy	of	a	moving	body	Ek=moc2/√(1+v2/c2)	

Rela,vis,c	Doppler	effect		

Proper	,me	

Space-,me	is	a	four-vector:	xµ	=	[ct,	x]	
For	μ=0,1,2,3	



Minkowski		
“…Space	by	it	self	and	,me	by	itself	are	doomed	to	fade		
away	into	mare	shadows,	and	only	a	kind	of	union	of	the	two		
will	preserve	an	independent	reality.”		
	
“Goings	in	the	physical	world	are	described	by	the	geometrical		
structures	in	the	space	,me”	

ds2	=	

ü  Interval	between	two	events	is	same	in	all	iner,al	frames	of	reference.	
It	is	invariant	under	Lorentz	transforma,on.	
ü  Lorentz	transforma,on	is	nothing	but	rota,on	in	space	,me.	

“Minkowski	took	rela,vity	out	of	special	theory	of	rela,vity	and	presented	us	with	an	absolute		
picture	of	spa,o-temporal	ac,vity”	@	Penrose		
	
“Minkowski’s	insights	were	the	key	to	the	discovery	of	General	theory	of	rela,vity”	@	Penrose	



Rela,on	between	iner,a	and	energy	existed	in	special	theory	of	rela,vity	
But	no	rela,on	between	iner,a	and	weight..	
You	can	not	switch	off	gravity..	
	
But	locally	a	freely	falling	body	will	not	experience	its	weight.	
	
Einstein’s	thought	experiment	
“No	experiment	can	dis,nguish	between	uniform	accelera,on	due	to	an		
engine	and	uniform	to	gravita,onal	field.”	

Special	theory	of	rela,vity	to	general	theory	of	rela,vity	



1919	in	a	session	of	the	Royal	Society	of	London		
Eddington	verified	Einstein’s	predic,on	of	diffrac,on	of	light	by	the	sun.	
Light	is	deflected	according	to	Einstein’s	law	of	Gravita,on		

“Fusion	of	two	disconnected	subjects,	metric	and	gravita,on	can	be	considered	
as	the	most	beau,ful	achievements	of	the	general	theory	of	rela,vity.”	Pauli	

Eddington		



1.7	arc	sec	

Light	has	weight	and	would	therefore	be	deflected	by	gravity	
	
No	experiment	on	Earth	will	be	able	to	measure	this	deflec,on	as	it	is	too	small	
and	at	that	,me	technology	would	not	have	allowed	it	to	be	measured.		
	
If	you	have	a	ray	of	light	grazing	the	surface	of	the	sun,	then	it	would	be	deflected		
by	1.7	arc	sec	
	
Gravity	modified	Minkowski	space	,me..	

“Fusion	of	two	disconnected	subjects,	metric	and	gravita,on	can	be	considered	
as	the	most	beau,ful	achievements	of	the	general	theory	of	rela,vity.”	Pauli	



	Four	vectors	

Four	vectors	–Four	components	that	transform	in	a	specific	way		
																									under	Lorentz	transforma,on	
	
Length	of	Four	vectors	is	invariant	i.e.	same	in	every	iner,al	system		

Electromagne,sm	predicts	that	waves	travel	at	c	in	vacuum.	
	
Laws	of	electro	magne,sm	must	be	Lorentz	invariant.	



	Special	rela,vity	in	one	slide	
(Repeat)	

Four	vector-	1		
Space-,me	is	a	four-vector:	xµ	=	[ct,	x]	
	
Four-vectors	have	Lorentz	transforma,ons	between	two	frames	
with	uniform	rela,ve	velocity	v:				
	

															x’	=	γ(x	−	βct);																	ct’	=	γ(ct	−	βx)	

xµxν	=	c2t2	−	|x|2	=	c2t’2	−	|x’|2	=	s2	

Lengths	of	four	vectors	are	Lorentz	invariant	



	Charge	and	Current	densi,es	
(Repeat)	

Under	a	Lorentz	transforma,on	a	sta,c	charge	q	at	rest	becomes	a			
charge	moving	with	velocity	v.	This	is	a	current.	

A	sta,c	charge	density	ρ	at	one	frame	becomes	a	current	density	J	in	other	
	
Note:	Charge	is	conserved	by	a	Lorentz	transforma,on	
	
Four-vector	2	
The	charge/current	four-vector	is:					
							
																																																			Jµ	=	[cρ,	J]	
	
The	full	Lorentz	transforma,on	is:		

																													J’x	=	γ(Jx	−	vρ);												ρ’	=	γ(ρ	−	v/c2	Jx)	
	
Note:		γ	factor	can	be	understood	as	a	length	contrac,on	or		,me		dila,on	
affec,ng	the	charge	and	current	densi,es		



	Electrosta,c	and	vector	poten,als	

	
Under	a	Lorentz	transforma,on	a	V	becomes	an	A:	

A	sta,c	charge	density	ρ	is	a	source	of	an	electrosta,c	poten,al	V	
A	current	density	J	is	a	source	of	a	magne,c	vector	poten,al	A	

Four-vector	3		
The	poten,al	four-vector	is	



	Covarience	of	electromagne,c	
phenomenon	

Maxwell’s	equa,ons	are	Lorentz	invariant	

Con,nuity	equa,on:	

This	shows	that	charge	conserva,on	is	Lorentz	invariant!	



	Covarience	of	electromagne,c	
phenomenon	

Maxwell’s	equa,ons	are	Lorentz	invariant	

Con,nuity	equa,on:	

This	shows	that	charge	conserva,on	is	Lorentz	invariant!	

Lorentz	gauge	condi,on	



	Covarience	of	electromagne,c	
phenomenon	

Maxwell’s	equa,ons	are	Lorentz	invariant	

Con,nuity	equa,on	

This	shows	that	charge	conserva,on	is	Lorentz	invariant!	

Lorentz	gauge	condi,on	

Poisson’s	equa,ons	



	Electric	and	Magne,c	fields	
The	Lorentz	force	on	a	moving	charge	is,	

A	sta,c	point	charge	is	a	source	of	an	E	field	
A	moving	charge	is	a	current	source	of	a	B	field	
	
Whether	a	field	is	E	or	B	depends	on	the	observer’s	frame	



	Lorentz	transforma,on	of	E	and	B		
Electric	and	magne,c	field	in	terms	of	poten,als	can	be	wriAen	as		

Lorentz	transforma,on	of	poten,als	

Using	this	transforma,on	and	the	Lorentz	gauge	condi,on	the	transforma,ons	of	
the	electric	and	magne,c	fields	are	(no	deriva,on)	



	Lorentz	transforma,on	of	E	and	B		

A	charge	at	rest	has	B	=	0	and	a	spherically	symmetric	E	field	
A	highly	rela,vis,c	charge	has	β	→	1,	γ		>>	1	

The	electric	field	is			

The	magne,c	field	is			



	Electromagne,c	field	Tensor		
Electric	field	and	magne,c	field	can	be	expressed	as	components	of		
Electromagne,c	field	tensor	in	following	form	

where	



		Maxwell’s	equa,on	in	terms	of	Fμν		
Maxwell’s	equa,on	with	source	terms	

M1	

M4	

Maxwell’s	equa,on	without	source	terms	

M2	

M3	

Maxwell’s	equa,ons	are	Lorentz	invariant		



		Rela,vity	and	electromagne,c	field		

For	the	pure	boost	with	velocity	v=cβ,	equa,ons	can	be	wriAen	in	the	following	form	

Pure	Electric	field	is	not	Lorentz	invariant		
	
Pure	Magne,c	field	is	not	Lorentz	invariant	
	
e.g.	If	the	field	is	purely	electric	in	one	frame	in	another	frame	it	will	be	a	mixed		
electric	and	magne,c	field	

Any	scalar	formed	with	Fμν	represents	func,on	of	E	and	B	that	is	Lorentz	invariant.	



		Rela,vity	and	electromagne,c	field		

Any	scalar	formed	with	Fμν	represents	func,on	of	E	and	B	that	is	Lorentz	invariant.	



		Fields	of	a	uniformly	moving	charge		
Fields	of	a	charge	moving	with	constant	velocity	v	in	the	x-axis	
In	the	rest	frame	of	the	charge	the	fields	are	

Fields	in	the	moving	frame	of	charge	



		Fields	of	a	uniformly	moving	charge		

E	derived	from	Lienard-Wiechert	poten,al		
in	near	field	regime		
(derived	in	4.6	of	R&L	)		



		Fields	of	a	uniformly	moving	charge		

Time	dependence	of	fields	Ex	and	Ey	from	a	par,cle	of	uniform	high	velocity	



		Fields	of	a	uniformly	moving	charge		

Time	dependence	of	fields	Ex	and	Ey	from	a	par,cle	of	uniform	high	velocity	

ü  Fields	are	strong	when	t~b/γv		

ü  Fields	of	the	moving	charges	are	concentrated	in	the	plane	transverse	to	its	mo,on		
into	an	angle		of	order	of	1/γ	
	



		Fields	of	a	uniformly	moving	charge		

Time	dependence	of	fields	Ex	and	Ey	from	a	par,cle	of	uniform	high	velocity	

ü  Fields	are	mostly	transverse	(in	y	direc,on)	since	(Max	Ex)/(Max	Ey)=	1/γ		

ü  Field	of	a	highly	rela,vis,c	charge	will	appear	as	a	pulse	of	radia,on	traveling	in		
The	same	direc,on	as	the	charge	and	confined	to	the	transverse	plane:		
Connec,on	between	fields	of	used	in	treatment	of	“method	of	virtual	quanta”	in		
rela,vis,c	bremssrahlung	/synchrotron	radia,on.	



		Equivalent	spectra			

Integra,on	in	terms	of	modified	Bessel	func,on,	

Thus	the	spectrum	is,	



		Equivalent	spectra			

The	spectrum	of	virtual	pulse,	

The	spectrum	starts	to	cut	off	for	ω>γv/b		
	
(From	uncertainty	principle	since	pulse	is	confined	to	,me	interval	of	~b/γv)		



		Equivalent	spectra			
The	spectrum	of	virtual	pulse,	

Area	element	perpendicular	to	the	velocity	of	a	moving	par,cle	

Energy	per	unit	frequency	range	



		Equivalent	spectra			

Lower	limit	to	sa,sfy	the	descrip,on	of	field	in	classical	electrodynamics	and		
considering	point	charge,	
e.g.	bmin=radius	of	ion	

Energy	per	unit	frequency	range	

Considering	

Integra,ng	in	terms	of	Bessel	func,ons	



		Equivalent	spectra			

Two	limits	when	ω	is	small	and	large		

Energy	per	unit	frequency	range	



		Emission	from	rela,vis,c	par,cles		
The	energy	in	as	frame	K	moving	with	velocity	–v	with	respect	to	the	par,cle	is		

Total	power	emiAed	in	frames	K	and	K’		

EmiAed	power	is	Lorentz	invariant	for	any	emiAer	that	emits	with		
Front-back	symmetry	in	its	instantaneous	rest	frame	



		Emission	from	rela,vis,c	par,cles		

The	power	to	be	calculated	in	any	frame	by	calcula,ng	a	in	that	par,cular	frame		
and	squaring		

(Rybicki	&	Lightman	4.3)	



		Emission	from	rela,vis,c	par,cles		

The	power	and	be	calculated	in	any	frame	by	calcula,ng	a	in	that	par,cular	frame		
and	squaring	



End	of	Lecture	6	

Next	lecture	:	29th	August	

“It’s	not	that	I’m	so	smart,	it’s	just	that	I	stay	with	problems	longer.”	
@	Einstein		

Topic	of	next	Lecture:		
Bremsstrahlung	
(Chapter	5	of	Rybicki	&	Lightman)			


