
Lecture	5	–	Radia-on	from	moving	charges		

	Date	:	22nd	September	2019	

Bhaswa-	BhaAacharyya			

							Electrodynamics	and	Radia-ve	Processes	I			

	
August-September	2019	

IUCAA-NCRA	Graduate	School	

	
bhaswa-@ncra.-fr.res.in	



Lecture	-5		
Ques-ons	raised	in	the	class	(update)	

		Why	j.E	is	rate	of	change	of	mechanical	energy	

-	ve	Sign	in	slide	36	



Recap	Lecture	4	
	

Maxwell’s	equa-ons	

Maxwell’s	equa-ons	in	vacuum	

Wave	equa-on	with	E	

Solu-on	of	wave	equa-on	with	E	and	B	



Maxwell’s	Equa-ons	(Recap)	
(in	Gaussian	units)	

Recap	Lecture	4	
	

Electromagne-c	Poten-als	
E	and	B	are	replaced	by	Φ(r,t)	and	A(r,t)		

1)	One	scalar	plus	one	vector	simpler	than	two	vectors	

2)	Determining	A	and	Φ	are	simpler	

3)	Rela-vis-c	EM	theory	will	be	simpler	



Recap	Lecture	4	
	

Scalar	and	vector	poten-al	are	not	uniquely	determined	by	the	condi-ons		
	

Lorentz	Gauge	



Recap	Lecture	4	
	

Fig	:	Radia-on	field	at	R	from	posi-on	of	the	radia-ng	par-cle	at	the	retarded	-me	



Fig	:	Radia-on	field	at	R	from	posi-on	of	the	radia-ng	par-cle	at	the	retarded	-me	
			

Velocity	field	 Accelera-on/Radia-on	field	

Recap	Lecture	4	
	



Radia-on	field	

Velocity	field	
§  1/R2	dependence	
§  Only	contribu-ng	term	for		
par-cle	with	constant	velocity	
§  Generaliza-on	of	the	Coulomb’s		
law	to	moving	par-cles	approaches		
to	coulomb’s	law	when	u<<c	

Accelera-on	field/Radia-on	field	
1/R	dependence	
Propor-onal	to	par-cle’s	accelera-on	
perpendicular	to	n	

§  Electric	filed	always	point	towards		
current	posi-on	of	the	par-cle	



Radia-on	field	

Radia-on	field	

Erad,	Brad,	n	:	mutually	perpendicular	
	|Erad|	=	|Brad|	



Radia-on	fields	
Consider	a	par-cle	originally	moving	at	constant	velocity	along	x	axis	is	stopped		
at	x=0	and	t=0	
	
At	t=1	the	field	outside	of	a	radius	c	is	radial	and	points	to	the	posi-on	where		
par-cle	would	have	been	if		there	was	no	decelera-on	(since	no	informa-on	
Is	yet	propagated	to	that	distance)			
	
But	field	inside	the	radius	c	is	informed.	
	



Radia-on	fields	

These	two	fields	can	be	connected	with	flux	conserva-on:	as	shown	in	the	figure.	
	
Transi-on	zone	whose	radial	thickness	is	the	-me	interval	over	which	decelera-on	occurs.	
This	transi-on	zone	is	almost	transverse	and	much	stronger.		
	



Radia-on	Spectrum	
Energy	per	unit	frequency	per	unit	solid	angle	corresponding	to	the	radia-on	
field	of	a	single	par-cle	

Evaluated	at	a	retarded	-me		

(Lecture	4)	



Radia-on	Spectrum	
Energy	per	unit	frequency	per	unit	solid	angle	corresponding	to	the	radia-on	
field	of	a	single	par-cle	

Evaluated	at	a	retarded	-me		

Changing	variable	from	t	to	t’			



Radia-on	from	non-rela-vis-c	systems	of	
par-cles	

Knowing	the	velocity	and	radia-on	fields	we	will	be	able	to	discuss	many		
radia-on	processes	involving	moving	charges		

Electric	filed	of	moving	charges		

For	the	moment	we	will	consider	discussion	of	non	rela-vis-c	par-cles	

Evel	 E	rad	



Radia-on	from	non-rela-vis-c	systems	of	
par-cles	

Considering		

For	par-cle	with	frequency	of	oscilla-on	ν		

R	<	λ				 “Near	zone”			

R	>>		λ(c/u)					

Velocity	field	stronger	than		
Radia-on	field	by	>	c/u			

“Far	zone”			 Accelera-on	field	dominates	
Domina-on	increase	linearly	with	R	

Refer	to	Slide	26	



Larmor’s	Formula	
Total	power	radiated	by	a	non-rela-vis-c	point	charge	as	it	accelerates		

For	β<<1		

Outward	flow	of	energy	along	n		



Larmor’s	Formula	
Total	power	radiated	by	a	non-rela-vis-c	point	charge	as	it	accelerates		

For	β<<1		

Poyn-ng	Vector		

Outward	flow	of	energy	along	n		



Larmor’s	Formula	

Larmor’s	Formula	for	emission		
from	a	single	accelerated	charge	q	

Power	radiated	per	unit	solid	angle	per	unit	-me			



Larmor’s	Formula	

ü  Power	emiAed	is	propor-onal	to	square	of	charge	and	square	of	accelera-on				

ü  Dependence	on	sin2	Θ		:	No	radia-on	along	direc-on	of	accelera-on	
																																																		Max	radia-on	perpendicular	to	accelera-on				

ü  Direc-on	of	Erad	is	determined	by	ů	and	n	:	If		the	par-cle	accelerates	along	a		
						line	radia-on	will	be	100%	polarized	in	the	plane	of	ů		and	n	



Larmor’s	Formula	

Limita6ons:	
ü  Larmor's	formula	is	nonrela-vis-c;	it	is	valid	only	in	frames	moving	at	

veloci-es	v<<c	with	respect	to	the	radia-ng	par-cle.		
	
ü  To	treat	par-cles	moving	at	nearly	the	speed	of	light	in	the	observer's	frame,	

we	must	use	Larmor's	equa-on	to	calculate	the	radia-on	in	the	par-cle's	
rest	frame	and	then	transform	the	result	to	the	observer's	frame	in	a	
rela-vis-cally	correct	way.			

	
ü  Larmor's	formula	does	not	incorporate	the	constraints	of	quantum	

mechanics,	so	it	should	be	applied	with	great	cau-on	to	microscopic	systems	
such	as	atoms.		For	example,	Larmor's	equa-on	incorrectly	predicts	that	the	
electron	in	a	hydrogen	atom	will	quickly	radiate	away	all	of	its	kine-c	energy	
and	fall	into	the	nucleus.	



Dipole	approxima-on		

When	there	are	many	par-cles	with	posi-on	ri,	veloci-es	ui,	charges	qi		
Radia-on	field	at	large	distance	~	summa-on	of	Erad	for	each	par-cle	

But		Erad	for	each	par-cle	is	true	for	different	retarded	-mes	

Collec-on	of	charged	par-cles	

How	to	derive	radia-on	field?	



Dipole	approxima-on		

v	
v	

v	 v	
v	

v	

L	:	scale	of	the	system	

τ	:	-me	scale	for	changes	

Differences	in	retarded	-me	across	source	is	negligible		

ν	:	characteris-c	frequency	of	Erad=1/τ	

Differences	in	retarded	-me	can	be	ignored	if		
size	of	the	system	is	small	compared	to	wavelength		



Dipole	approxima-on		

Dipole	approxima-on	:		
Larmor’s	formula	extended	for	a	collec-on	of	non-rela-vis-c	par-cles				



Dipole	approxima-on	
Spectrum	of	radia-on		

Assuming	d	lies	in	single	direc-on	

Fourier	transform	of	d(t)	

Electric	field	in	frequency	domain	



Dipole	approxima-on	
Spectrum	of	radia-on		

Assuming	d	lies	in	single	direc-on	

Spectrum	of	radia-on	

Energy	per	unit	solid	angle	per	frequency	range,	(dA=	R02	dΩ)	

From	Lecture	4,	energy	per	unit	area	

Electric	field	in	-me	domain	

Electric	field	in	frequency	domain	



Dipole	approxima-on	
Spectrum	of	radia-on		

Spectrum	of	radia-on	

Rayleigh	scaAering	formula	
propor-onal	to		1/λ	4	
(Reason	for	blue	color	of	the	sky)	



Recap		
Lecture	5	-ll	now		

Maxwell’s	equa-on	with	source	terms	

Introduce	scalar	poten-al	Φ(r,t)	and	vector		poten-al	A(r,t)	

Expression	of	Φ(r,t)	and	A(r,t)		in	terms	of	κ	and	R	at	retarded	-me	

Expression	of	Electric	field	E	having	two	components	

Velocity	field	and	Radia-on	field		and	when	they	are	important	

Total	power	radiated	by	non	rela-vis-c	point	charge	when	it	accelerates	

Dipole	approxima-on	



Recap			

Maxwell’s	equa-on	with	source	terms	

Introduce	scalar	poten-al	Φ(r,t)	and	vector		poten-al	A(r,t)	

Expression	of	Φ(r,t)	and	A(r,t)		in	terms	of	κ	and	R	at	retarded	-me	

Expression	of	Electric	field	E	having	two	components	

Velocity	field	and	Radia-on	field		and	when	they	are	important	

Total	power	radiated	by	non	rela-vis-c	point	charge	when	it	accelerates	

Dipole	approxima-on	



“In	recogni-on	of	the	great	merits	of	his	
theore-cal	and	experimental	inves-ga-ons	on	
the	conduc-on	of	electricity	by	gases."	



Thomson	scaAering	

Let	us	consider	applica-on	of	the	dipole	formula	in	a	process	in	which	a		
free	charge	radiates	in	response	to	an	incident	electromagne-c	wave			

Process	by	which	an	electromagne-c	wave	is	scaAered	by	a	free	electron.		

Applicable	for			hν<<mec2	



Thomson	scaAering	

Consider	a	linearly	polarized	electromagne-c	wave	incident	on	a	free	electron	

Process	by	which	an	electromagne-c	wave	is	scaAered	by	a	free	electron.		

Applicable	for			hν<<mec2	

Force	on	the	electron		

Negligible	as	v<<c	



Thomson	scaAering	
Force	of	a	linearly	polarized	wave	ac-ng	on	a	electron	



Thomson	scaAering	
Force	of	a	linearly	polarized	wave	ac-ng	on	a	electron	

Dipole	moment	is	defined	by	

Oscilla-ng	dipole	of	amplitude		



Thomson	scaAering	
Dipole	approxima6on	
Radia-on	from	a	non	rela-vis-c		
system	of	par-cles	(λ>>L)		

Thomson	sca@ering	
Electron	subject	to	electromagne-c	wave	
(hν<<mc2	)	

	(-me	average	of	sin2	ωot	gives	a	factor	½)		

Power	radiated	per	unit	solid	angle	 Power	radiated	per	unit	solid	angle	

Total	Power	radiated		 Total	Power	radiated		

Second	deriva-ve	of	dipole	moment	 Second	deriva-ve	of	dipole	moment	



Thomson	scaAering	

Define		differen-al	cross	sec-on	dσ	for	scaAering	in	to	dΩ			

Classical	electron		
radius	

Remember	-me	averaged	poin-ng	flux	is	defined	as			



Thomson	scaAering	
Classical	electron	radius	

Measure	of	the	size	of	the	point	charge	
(assuming	the	rest	energy	is	purely	electromagne-c)	
~2.8x10-13	cm	

Total	cross-sec-on	is	obtained	a�er	integra-ng	over	solid	angle,	

=	σT	~0.66	x10-24	cm2	

Thomson	ScaAering	cross	sec-on	

²  Frequency	independent,	so	scaAering	is	equally	effec-ve	at	all	frequencies.	
	
²  Valid	for	lower	frequencies.		Not	valid	for	high	frequencies	hν	>mc	2	



Thomson	scaAering	
Calculated	Thomson	scaAering	cross-sec-on	for	an	electron	and	Polarized	EM	wave	

Incoming	wave	linearly	polarized	along	ε		

Outgoing	EM	wave	is	also	linearly	polarized	in	the	plane	defined	by	ε	and	n	

Unpolarized	EM	(beAer	randomly	polarized)	wave	can	be	regarded	as		
superposi-on	of	two	linearly	polarized	beams	with	perpendicular	axes	



Unpolarized	EM	wave	can	be	regarded	as	superposi-on	of	two	linearly	polarized		
beams	with	perpendicular	axes	ε1	and	ε2	

Thomson	scaAering	

angle	between	scaAered		
and	incident	wave	θ=	π/2-Θ	

Direc-on	of	incident	wave	

Direc-on	of	scaAered	wave	



Unpolarized	EM	wave	can	be	regarded	as	superposi-on	of	two	linearly	polarized		
beams	with	perpendicular	axes	

Thomson	scaAering	

Differen-al	cross	sec-on	for	unpolarized		
radia-on	is	the	average	of	the	cross	sec-ons		
of	linear-polarized	radia-on	through	Θ	and	π/2	



Thomson	scaAering	

ü  Forward-backward	symmetry	:	The	scaAering	cross	sec-on	is	symmetric		
under	the	reflec-on	θ	à	-θ		
	
ü  Total	cross	sec-on:	The	total	scaAering	cross-sec-on	of	unpolarized		
incident	radia-on	is	same	as	that	for	polarized	incident	radia-on.	
Since	electron	at	rest	has	no	direc-on	intrinsically	defined.	
	

intensi-es	in	two	perpendicular	direc-ons		
in	the	plane	normal	to	n	arising	from	two		
perpendicular	components	of	the	incident	wave	



Thomson	scaAering	

Polariza-on	intensi-es	in	the	plane	and	perpendicular	are	cos2	θ	:1		

intensi-es	in	two	perpendicular	direc-ons		
in	the	plane	normal	to	n	arising	from	two		
perpendicular	components	of	the	incident	wave	

For	par-ally	polarized	light	degree	of	polariza-on	of	the	scaAered	wave				



Thomson	scaAering	
k	direc-on	of	incoming	e.m.	wave		

n	direc-on	of	scaAered		wave	Total	scaAering	cross-sec-on	

	Reflec-on	θ	à	-θ	
ScaAering	cross-sec-on	is	same		
	
ü  ScaAering	cross	sec-on	for	unpolarized	wave		
=	ScaAering	cross-sec-on	for	polarized	wave		

ü  Degree	of	polariza-on	of	scaAered	wave		



Thomson	scaAering	

Since		Π	>	0	electron	scaAering	of	a	completely	unpolarized	incident	wave		
produces	scaAered	wave	with	some	degree	of	polariza-on	intensi-es.	
The	degree	depend	on	θ		



	Example	
Absorp-on	coefficient		

Number	density		
of	par-cles		

Thomson	scaAering	cross	sec-on	
~6.62x	10-25	cm2	

The	cosmic	microwave	background	is	linearly	polarized	as	a	result	of	Thomson	
scaAering	(as	measured	by	Degree	angular	scale	interferometer(DASI)	and	
more	recent	experiments).	
	
The	solar	K-corona	is	the	result	of	the	Thomson	scaAering	of	solar	radia-on	
from	solar	coronal	electrons.	

So	Thompson	scaAering	is	significant	only	when	number	density	is	high	

α=nσT	



	Example	
Op-cal	depth	

Now	considering	a	nebula	having	n	=10,000	and		
At	a	distance	of	R=1019	cm	
	
Then	we	can	get	es-mate	of		τ=10,000x1019x6.25X10-25=	0.07		

Op-cally	thin	



	Example	

The	cross-sec-on	for	Thomson	scaAering	is	-ny	and	therefore	Thomson	scaAering	is	
most	important	when	the	density	of	free	electrons	is	high,	as	in	the	early	Universe	or		
in	the	dense	interiors	of	stars.	



Radia-on	reac-on	

Force	ac-ng	on	a	par-cle	by	virtue	of	the	radia-on	it	produces		
																				
																			Radia-on	reac-on	force	

Let	T	be	the	-me	interval	over	which	kine-c	energy	of	the	par-cle	is	changed	
substan-ally	by	the	emission	of	radia-on	

1/τ	



Radia-on	reac-on	

As	long	as	we	are	considering	processes	that	occur	on	a	-me	scale	much		
longer	than		τ,	we	can	treat	radia-on	reac-on	as	a	perturba-on.		

	τ	~	ro/c		à		-me	for	radia-on	to	cross	a	distance	comparable	to		
																										classical	electron	radius					



Radia-on	reac-on	

Energy	radiated	compensated	by	work	done	against	radia-on	reac-on	force	Frad.		

Abraham–Lorentz	force		



Radia-on	reac-on	

Recoil	force	ac-ng	on	the	charge	
	
Propor-onal	to	the	accelera-on	
	
Valid	for	non	rela-vis-c	cases.	
Dirac	proposed	rela-vis-c	version		



End	of	Lecture	5	

Next	lecture	:	26th		August	

Reference:	Rybicki	Lightman	Chapter	3		

Topic	of	next	Lecture:		
Rela-vity	in	Electrodynamics	
(Chapter	4	of	Rybicki	&	Lightman)		
Prepara-on:	special	rela-vity		

Link	to	lecture	on	radia-on	from	accelerated	charges	by	Prof.	G	Srinibasan	
:	hAps://www.youtube.com/watch?v=GIYMHkkFGhc&list=PL04QVxpjcnjidFFZjZ3m0aJ6pnKfBN5sA	


