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Lecture -5
Questions raised in the class (update)

Why j.E is rate of change of mechanical energy

- ve Sign in slide 36 R*(t")=R*1)
2R(1)R(1')= —2R(1')u(?"),



Recap Lecture 4

Maxwell’s equations

Maxwell’s equations in vacuum

2
Wave equation with E V2E — | 0°E =0
c? ar?
Solution of wave equation with E and B EF = ﬁl E, pl(kT—wl)

— - i(ker—owrt)



Recap Lecture 4

Maxwell’s Equations (Recap)
(in Gaussian units)

V-D=4np V-B=0
VXE=—19§ VxH=ﬂj+l@
c ot C c Ot

Electromagnetic Potentials
E and B are replaced by ®(r,t) and A(r,t)

‘ B=VxA.‘ =—V¢—l§-’-‘—

¢ Ot

1) One scalar plus one vector simpler than two vectors
2) Determining A and O are simpler

3) Relativistic EM theory will be simpler



Recap Lecture 4

Scalar and vector potential are not uniquely determined by the conditions

1 d¢
Lorentz Gauge  V-A+ -3 =0



Recap Lecture 4

Rir, 1)

Particle position
at¢

Path of
particle

Particle position
atte,,,

Fig : Radiation field at R from position of the radiating particle at the retarded time

q
K(Iret)R(trct) K(l’)= I — %n(t’)'U(t,)

o(r,1)=

(& ~[a]
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Recap Lecture 4

Particle position

Rir, t)

Particle position
at¢

Path of

particle 6

1]
o=

k=|-—n-*B

Fig : Radiation field at R from position of the radiating particle at the retarded time

[ :?_R X {(n_B)xB}] B(r,?) =[an(l‘,I)]

[(=-B)(1-8%) ], g
|
Velocity field Acceleration/Radiation field



Radiation field

E(r,)=¢ ‘“"Q“’ ) 3{—“; (n B)

[ «3R?2
Velocity field Acceleration field/Radiation field
= 1/R?dependence 1/R dependence
= Only contributing term for Proportional to particle’s acceleration
particle with constant velocity perpendicular to n

»  Generalization of the Coulomb’s
law to moving particles approaches
to coulomb’s law when u<<c

= Electric filed always point towards
current position of the particle




Radiation field

E(r,1)=q{ b + 2 x{(a-B)xh) |
Radiation field .
v E,ad(r,t)=%[:;§x{(n-—B)xB}].

Brad(r’t)z [anrad]‘

Erad, Brad, n : mutually perpendicular

[Eradl = 1Bragl



Radiation fields

Consider a particle originally moving at constant velocity along x axis is stopped
at x=0 and t=0

At t=1 the field outside of a radius c is radial and points to the position where
particle would have been if there was no deceleration (since no information

Is yet propagated to that distance)

But field inside the radius c is informed.




Radiation fields

x=0 x =1

These two fields can be connected with flux conservation: as shown in the figure.

Transition zone whose radial thickness is the time interval over which deceleration occurs.
This transition zone is almost transverse and much stronger.



Radiation Spectrum

Energy per unit frequency per unit solid angle corresponding to the radiation

field of a single particle dj‘: — CIE(w)IZ (Lecture 4)
w
dW c iwt ’
dod@ = am3| | [REW e
2 . . 2
= 2| [ [ax ((a-B) xB)x ) e

l

Evaluated at a retarded time



Radiation Spectrum

Energy per unit frequency per unit solid angle corresponding to the radiation
field of a single particle

dw ¢ et 2
70d = 31| ) [ RE(D)]ed

2 2

f[nx{(n—B)xB}x‘3]e‘“’dt

4n2c

Evaluated at a retarded time

Changing variable fromtto t’ r=1- R(’ )/C R(’ )z|r| —ner
dt=kdt

2

aw 9 fnx{(n—B)XB}K_ZCXP[iw(""“'ro(")/")]d" |

dwdQ  4nic




Radiation from non-relativistic systems of
particles

Electric filed of moving charges

[ (m=pB)(1-87)

_ CANLE _Byxg) |
E(r,t)—q[ SR +C[K,R><{(n B)Xﬂ}J
l !
Evel Erad

Knowing the velocity and radiation fields we will be able to discuss many
radiation processes involving moving charges

For the moment we will consider discussion of non relativistic particles

E rad &
E c?

vel



Radiation from non-relativistic systems of
particles

Refer to Slide 26

E(m)=q{ (-p(1-F) }d[;;‘? x {(n—B)x £} ]

k°’R? ¢ J
Considering . u E .a Ru
|B|=—<I 3
¢ vel C
E uy R
For particle with frequency of oscillation v rad 5? vz
vel C C A

R<A ﬁ “Near zone” ﬁ Velocity field stronger than

Radiation field by > c/u

R>> A(c/u) Emmmmp  “Farzone” mmmm) Acceleration field dominates
Domination increase linearly with R



Larmor’s Formula

Total power radiated by a non-relativistic point charge as it accelerates

E.qr)= —‘i[;;'—é x{(n—B)xB} |

C

For B<<1 i

=[(g/Rc*)nx (nxu)]

Erad
Bmd= [DXErad]'

Outward flow of energy along n



Larmor’s Formula

Total power radiated by a non-relativistic point charge as it accelerates

Erad(r’t)= i[:?? X {(n“'B)XB} '

C
For B<<1 i

E. = [(q/Rcz)nx(nXt'l)]
Brad= [nXErad]'

IErad‘ o |Brad‘ - E sin®

Poynting Vector
c gt .,
S= 477 —E2,= 47 R4 sin“© Outward flow of energy along n



Larmor’s Formula

¢ g2 _ € 4% sin’®
477 rad 477 R2C4

Power radiated per unit solid angle per unit time

aw g%t ., _dw _ ¢qt .,
71d0 P sin”©. > P= a4 fsm 4
P 2q7122
3¢°

'

Larmor’s Formula for emission
from a single accelerated charge g



Larmor’s Formula

_dW _ qHt .,
P= 7 4m‘sfsm 04
.2
P 2q2u
3¢

v' Power emitted is proportional to square of charge and square of acceleration

v" Dependence on sinZ® : No radiation along direction of acceleration
Max radiation perpendicular to acceleration

v’ Direction of E_, is determined by U and n : If the particle accelerates along a
line radiation will be 100% polarized in the plane of 4 and n



Larmor’s Formula
=2q2122

3c°

P

Limitations:
v Larmor's formula is nonrelativistic; it is valid only in frames moving at
velocities v<<c with respect to the radiating particle.

v To treat particles moving at nearly the speed of light in the observer's frame,
we must use Larmor's equation to calculate the radiation in the particle's
rest frame and then transform the result to the observer's frame in a
relativistically correct way.

v Larmor's formula does not incorporate the constraints of quantum
mechanics, so it should be applied with great caution to microscopic systems
such as atoms. For example, Larmor's equation incorrectly predicts that the
electron in a hydrogen atom will quickly radiate away all of its kinetic energy
and fall into the nucleus.



Dipole approximation

R,

)

Collection of charged particles A\

When there are many particles with position I'; velocities U;, charges (;

Radiation field at large distance ~ summation of E__ 4 for each particle

But E, 4 for each particle is true for different retarded times

How to derive radiation field?



Dipole approximation

Differences in retarded time across source is negligible ﬁ T > L/ C,

Differences in retarded time can be ignored if
size of the system is small compared to wavelength

R

)

L : scale of the system

T : time scale for changes

V : characteristic frequency of E,_ =1/t

C
—> L

1 4
& \>L



: d=> gr,
q‘ nx(nxll‘) . i .

dP

Dipole approximation

c’R,

d’ 2d?

dSl

= sin? @, E— p="
4mc’ | 33

Dipole approximation :
Larmor’s formula extended for a collection of non-relativistic particles




Dipole approximation
Spectrum of radiation

dw

Assuming d lies in single direction E(t)= d(l) sin ©
2
¢“R,

| Fourier transform of d(t)
E(w)= — wid(w)sin® Y L
(@)=~ = R d(1) [ e d(w)dw,
i d(t)= ~ foc wd(w)e  “'dw

Electric field in frequency domain



Dipole approximation
Spectrum of radiation

dw
Assuming d lies in single direction
. SIn®
Electric field in time domain m L(1)=4d(1) >
¢“R,
Electric field in frequency domain =) é(w) — ] wZ(](w) sin ®
¢’R,
dw % A
From Lecture 4, energy per unit area 712' = Cj(; |E(w)|2dw._

Energy per unit solid angle per frequency range, (dA= R,? dQ)

aw 1 - .
‘a*,m‘ = —-J-w“]d(w)lzsm‘(r).
¢

dW 8rw®

2
Spectrum of radiation d do 30 fd(w)l




Dipole approximation
Spectrum of radiation

Spectrum of radiation d dw - 87 ’d‘(w)lz
dw 3¢?

i

Rayleigh scattering formula
proportional to 1/A*4
(Reason for blue color of the sky)



Recap
Lecture 5 till now

Maxwell’s equation with source terms
Introduce scalar potential ®(r,t) and vector potential A(r,t)

Expression of O(r,t) and A(r,t) in terms of k and R at retarded time

Expression of Electric field E having two components

Velocity field and Radiation field and when they are important

Total power radiated by non relativistic point charge when it accelerates

Dipole approximation



Recap

Maxwell’s equation with source terms
Introduce scalar potential ®(r,t) and vector potential A(r,t)

Expression of @(r,t) and A(r,t) in terms of k and R at retarded time

Expression of Electric field E having two components

E(r,t)=q{ (n_ﬁ)};z—ﬂ ) }'*%[;';—R x{(n—B)xB}}

Velocity field and Radiation field and when they are important T~

Total power radiated by non relativistic point charge when it accelerates 303

: : : 2d°
Dipole approximation P==
3¢




——— W B N T T— - —
,. ’ L) d

J.J. Thomson 18
Nobel Prize 190

“In recognition of the great merits of his
theoretical and experimental investigations on
the conduction of electricity by gases."



Thomson scattering

Let us consider application of the dipole formula in a process in which a
free charge radiates in response to an incident electromagnetic wave

Process by which an electromagnetic wave is scattered by a free electron.
Applicable for hv<<mec2



Thomson scattering

Process by which an electromagnetic wave is scattered by a free electron.
Applicable for hv<<mec2

Consider a linearly polarized electromagnetic wave incident on a free electron

=

Electric
field

Magnetic field

Direction of
wave travel

Force on the electron

F=q(E+%xB)

R

Negligible as v<<c



Thomson scattering

Force of a linearly polarized wave acting on a electron

F=eeE,sinwyt

i

mr = e€ £,S1n wy!




Thomson scattering

Force of a linearly polarized wave acting on a electron

F=eeEy sinwyt

i

mr = e€ E,S1n wy!.

Dipole moment is defined by d=er,

d=——€sINw,/, sy d=- 5 |esinwyl,
m mwy
illating dipole of amplitud e’E
Oscillating dipole of amplitude  dy= € €

mewy



Thomson scattering

Dipole approximation
Radiation from a non relativistic
system of particles (A>>L)

Second derivative of dipole moment

d= 2 q.r;

Power radiated per unit solid angle

P &
79 = e sin“ O,
Total Power radiated
2d?

P=—
3¢

Thomson scattering
Electron subject to electromagnetic wave
(hv<<mc?)

Second derivative of dipole moment

” e2E0 _
= ———€SIN W/,
m

Power radiated per unit solid angle
dP _ e*E;
dQ  8mmic

(time average of sin’ w,t gives a factor %)

sin‘@®

Total Power radiated

e'E}

P= 3

Imc



Remember time averaged pointing flux is defined as

Thomson scattering

C 2
S)=—E
(8)=5=Ej

Define differential cross section do for scattering in to dQQ

dP
PIY)

cE§ do

<S>d9 87 df)

(45)
dS) Jpolarized et

dP
aQ

4E2

2
23sm@

8mm-c

e4

Fo=

mc

—>

sin’ @ =r2sin’@®

Classical electron
radius



Thomson scattering

Classical electron radius

ei Measure of the size of the point charge
Fo= > (assuming the rest energy is purely electromagnetic)
mc ~2.8x1013 cm

Total cross-section is obtained after integrating over solid angle,

do

9= ) 4aq

2 dQ=2mr f (1-p?)du= °T 13 =0;~0.66 x102* cm?

Thomson Scattering cross section

<> Frequency independent, so scattering is equally effective at all frequencies.

<> Valid for lower frequencies. Not valid for high frequencies hv >mc ?




Thomson scattering

Calculated Thomson scattering cross-section for an electron and Polarized EM wave

:

Incoming wave linearly polarized along €

Outgoing EM wave is also linearly polarized in the plane defined by € and N

Unpolarized EM (better randomly polarized) wave can be regarded as
superposition of two linearly polarized beams with perpendicular axes




Thomson scattering

Unpolarized EM wave can be regarded as superposition of two linearly polarized

beams with perpendicular axes €; and g,

©

Direction of scattered wave
n

angle between scattered
and incident wave 6=1/2-0

K
Direction of incident wave



Thomson scattering

Unpolarized EM wave can be regarded as superposition of two linearly polarized
beams with perpendicular axes

Differential cross section for unpolarized
radiation is the average of the cross sections
of linear-polarized radiation through © and /2

S

— K

(8 )= (G0 )t (7))

=2 ro(1+sin’ @)

=2ro(1+cos?8)



Thomson scattering

(8 o3| () (“87)

v

intensities in two perpendicular directions
in the plane normal to n arising from two
perpendicular components of the incident wave

v" Forward-backward symmetry : The scattering cross section is symmetric
under the reflection © = -6

v’ Total cross section: The total scattering cross-section of unpolarized

incident radiation is same as that for polarized incident radiation.
Since electron at rest has no direction intrinsically defined.

6 unpol = Opor = (87 /3)rg



Thomson scattering

(8 o3| () (7).

| |
!

intensities in two perpendicular directions
in the plane normal to n arising from two
perpendicular components of the incident wave

N |-

Polarization intensities in the plane and perpendicular are cos?6 :1

For partially polarized light degree of polarization of the scattered wave

[1= Inax — I min M= | —cos’8
Inax + I min 1 +cos*8




Thomson scattering

k direction of incoming e.m. wave
Total scattering cross-section

N direction of scattered wave
(gg) _ [(do(@))) +(do(7r/2))
dQ unpol dQ pol dQ pol

N | -

=%r§(l +sin’ Q)
g
=3 r3(1+cos’8), )

Reflection 8 - -6

. o =q/2—0
Scattering cross-section is same

v’ Scattering cross section for unpolarized wave
= Scattering cross-section for polarized wave €2

ounpol = opol = (877/3)"3

_ 1—cos*8

v' Degree of polarization of scattered wave I1= P
1 +cos“@




Thomson scattering

M= l-—-cosi&
1 +cos“@

Since 1> 0 electron scattering of a completely unpolarized incident wave
produces scattered wave with some degree of polarization intensities.
The degree depend on 6



Example

Absorption coefficient

a=N0;

l

Number density
of particles v

Thomson scattering cross section
~6.62x 102> cm?

So Thompson scattering is significant only when number density is high

The cosmic microwave background is linearly polarized as a result of Thomson
scattering (as measured by Degree angular scale interferometer(DASI) and
more recent experiments).

The solar K-corona is the result of the Thomson scattering of solar radiation
from solar coronal electrons.



Example

Optical depth

7,(s)= f a,(s')ds’

T=no;R

Now considering a nebula having n =10,000 and
At a distance of R=101°cm

Then we can get estimate of T=10,000x101°x6.25X10-2>= 0.07

.

Optically thin



Example

The cross-section for Thomson scattering is tiny and therefore Thomson scattering is
most important when the density of free electrons is high, as in the early Universe or
in the dense interiors of stars.



Radiation reaction

Force acting on a particle by virtue of the radiation it produces

=== Radiation reaction force

Let T be the time interval over which kinetic energy of the particle is changed
substantially by the emission of radiation

mo? v\2
T~ —_ el
P, ( a )
2e? _
T l T= 3 ~10"%%
2q2,32 3mc

= 3¢? 1/t



Radiation reaction

2
T= Ze ~10"%%

Ime?

T~ ro/c —> time for radiation to cross a distance comparable to
classical electron radius

As long as we are considering processes that occur on a time scale much
longer than T, we can treat radiation reaction as a perturbation.



Radiation reaction

Energy radiated compensated by work done against radiation reaction force F,_.

Abraham—Lorentz force



Radiation reaction

Recoil force acting on the charge
Proportional to the acceleration

Valid for non relativistic cases.
Dirac proposed relativistic version



End of Lecture 5

Reference: Rybicki Lightman Chapter 3

Link to lecture on radiation from accelerated charges by Prof. G Srinibasan
: https://www.youtube.com/watch?v=GIYMHkkFGhc&list=PL0O4QVxpjcnjidFFZjZ3m0al6pnKfBN5sA

Next lecture : 26t August

Topic of next Lecture:

Relativity in Electrodynamics
(Chapter 4 of Rybicki & Lightman)
Preparation: special relativity



