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Lecture -4
Questions raised in the class

Why do not we see HI emission in earth, what fraction spin up what fraction down?
Einstein’s coefficients are valid when thermodynamic equilibrium is not present?

Are the relation between Einstein coefficients truly independent of temperature?

Radiation pressure derivation in Rybicki and lightman's textbook.
Consider only the solid angle of 2t instead of 4. Why?

Can the proton flip the spin instead of the electron (regarding 21cm line)?
Reserve for later



Electric and magnetic field

F=q(E+%xB)

E B v

. + .

A

Moving charge = Magnetic field

Static charge —> Electric field - Electric current
Force on a test charge Magnetic force on a moving charge
Field of force @ Maxwell
Space around electrified object @ Faraday Units = Newton/(Coulomb m/s)
- Tesla
Units = Newton/Coulomb S Gauss

- volts per m




Electromagnetic flux

Yy
Lorentz force F= q(E + - X B)
Rate of work done v-F=gv-E
- ji= llm — ,
Currentdensity )& aro A V 2 q.v;

Rate of workdone _* e
A 7 2 gV ,E=}°E.

Rate of change in mechanical energy dUmoch =j-E
of system per unit volume dt



Maxwell’s Equations
(in Gaussian units)

V-D=4np V-B=0

V)(E=—1—QB V)(H=i”_j+_l.a_l)
c 0t c c dt



Maxwell’s Equations
(in Gaussian units)

V-D=4np V-B=0
VXE=—1§E VxH=i’Ij+_l.a_l?_
c Ot C c Ot
D= ¢E,
B=uH,
Voj+ @- ==



Electromagnetic flux

N F_¥.0D
jE—4w[c(VxH)E E az}

Using the following relation

E-(V xH)=H+V XE)— V-(ExH)

: ] B oD
jE—Z‘;[-‘H E.*CV (ExH)—-E ‘—a't—]



Electromagnetic flux

L F—F-
jE—4w[c(VxH)E E

aD
ot

Using the following relation

E-(V xH)=H+V XE)— V-(ExH)

. 1 oB oD
"E_47r[ H o cV«(ExH)—-E y ]
Poynting’s theorem | g X B2 c
JE+ 5 al(El-l» . )- V(4wExH)'
Rate of change of Rate of change of Divergence of field

Mechanical energy field energy U, + Uy energy flux



Electromagnetic flux

Electromagnetic field energy per unit volume

I B?
Uficld= g;(CEz'i‘ —}"'—)"—" Ug'*‘ UB!

Electromagnetic flux vector or Poynting vector

C
= Z;EXH.



Plane electromagnetic waves

Maxwell’s equation in vacuum

V-E=0 V-B=0
VxE=—l§P- V)<B=l—i-)E
¢ Of c Ot
Wave equation v2E__ l azE -0 How ?
c? ar?

Wave equation with B ?



Plane electromagnetic waves

Maxwell’s equation in vacuum

V-E=0 V-B=0
VxE=—l?P- VxB=l§E
¢ ot c 0Of
Wave equation V2E lz 82[21‘, —0
c“ 0ot

wave vector

frequency
Solutions of wave equation I_T/-)

A i(kr—wr)

—a (kr—wr)

unit vectors

complex constants



Plane electromagnetic waves

Substitution in Maxwell’s equation

ik-a,E,=0 ik-a,B,= Oﬁﬂ a, and a, are perpendicular to k
L W . W,

‘ |

a, and a, are perpendicular

a, a,and kare perpendicular

"

2
a/




Plane electromagnetic waves

Substitution in Maxwell’s equation

ik°ﬁ1E0=O ik'ﬁzB():O
: . W, , . w .
N
i k a, a,and kare perpendicular
w @




Plane electromagnetic waves

Substitution in Maxwell’s equation

ik.ﬁlE0=O ik'ﬁzBor‘O
. iw .
ikxaE =lTwﬁzBo ikXa,B,= _";alEO
w i W kA a, a,and k are perpendicular
Eo=7(;30, Bo=7(;Eo’ b PEr




Plane electromagnetic waves
Energy flux and energy density

Time averaged pointing vector <S > = — Re( EOB )
Since Eo _— BO'
<S>' |Eo|2—’-“|Bo|2

Similarly time averaged energy density

(Uy=~ 67 — Re(E,EX+ B,B?)

1
_ 2 _ 2
(U>= 5= | Eof'= 5By



Plane electromagnetic waves
Energy flux and energy density

Time averaged pointing vector <S > = — Re( EOB )
Since Eo _— BO'
<S>' |Eo|2—’-“|Bo|2

Similarly time averaged energy density

I U
(U>= g | Eoft=5-|Bd



Radiation spectrum
AwAr>1

!

with a radiation field of length At we can define spectrum with in Aw

E(w)= ifw E(t)e™'dr.

27 J_

Energy per unit area per unit time

dw ¢ _,
didd —an W

Total Energy per unit area dWw c f°° 2
= E~“(t)d:
dA 47 J_ (1)



Radiation spectrum

[* EXdr=2 " |Ew)fde

—w pu—

V

o0 0T A
f EX({)dt =4 f |E(w)4dw.
0

- 00

dW ¢ *® _, dw _ r® A 5
dA-%j EXndt ., -cfo | E(w)2de.

— o0

dw

— B 02
A de - ClEW)

Energy per unit area per unit frequency )




Radiation spectrum

Electric field Power spectrum

ko) A e )} Aw~1

- o

> ——

a) pulse

b) sinusoidal pulse

b} HAPL o sy
s |
AT B

Time extent of pulse T determines width of finest features : Aw ~ 1/T

Sinusoidal time dependence in pulse shape causes spectrum concentrated near w~w,



Electromagnetic Potentials
E and B are replaced by O(r,t) and A(r,t)

Why we need EM potentials?

1) One scalar plus one vector simpler than two vectors

2) Determining A and @ are simpler

3) Relativistic EM theory will be simpler




Electromagnetic Potentials

E and B are replaced by ©O(r,t) and A(r,t)
Why we need EM potentials?

1) One scalar plus one vector simpler than two vectors
2) Determining A and @ are simpler

3) Relativistic EM theory will be simpler

Maxwell’s equation V*B=0

Vector potential A(r,t) definedas B=V XA.

Thus | 9B 1 3A
__ 1B ( +-—)= .
VXE= Py "Ecaz 0
Scalar potential O(r,t) defined as E+ l -a—é =—Vo¢



Electromagnetic Potentials
E and B are replaced by ®(r,t) and A(r,t)

1 dA

E+-C~—5-;=—V¢
1 3A
E=—Vo %

Remember

V-D=47np

1 o
Vo + - at(V A) 47p



Electromagnetic Potentials

Thus from Maxwell’s equations,

1 d

2 —— en— * ) —
lV¢+c at(V A) l4'frp
2 1 9% 1 a(v. 1a¢)
¢ c2 912 ¢ Ot A cat,-4p



Electromagnetic Potentials

C c Ot

Thus from Maxwell’s equations,

VX(VXA)“'?E

l 8(_v IBA) 4

i VX(VXxA)=—-V:A+V(V-A)



Electromagnetic Potentials

C ¢ Ot

Thus from Maxwell’s equations,

1 d .
VX(VXA -?E(—V(b-——)———j

i VX(VxA)=—-V:A+V(V-A)

1 9°%A 1 d¢ 4
24 _ _ ‘V-4-| _—
VA c? 9r? v ¢ 31} c .




Electromagnetic Potentials

Thus from Maxwell’s equations,

1 0
Vo + Y (V-A) 47p

1 3% 1 9 1 3¢
- — — — = —
Vo 2 52 +C at(—V—ﬁC at) 47p
Thus from Maxwell’s equations,

Vx(VxA)—-

1
¢ ot




Electromagnetic Potentials

Scalar and vector potential are not uniquely determined by the conditions

For example, the addition of gradient Y to A will not change B

A—->A+Vy, B—-B.

Electric field will not change if ¢ is changed in following manner

o — i Q‘_{/_ . E-E.




Retarded Potentials

r

rl

1 3% [p]d?r
2, __ _ —_—
v¢ C2 8[2 - 47fp, ) ¢(l’,t)-f lr_rr‘ ’
| 3°%A 4 [']d3r’
24 _ — _ 7. i 1 )
VA ¢ ar? ¢ A("’)=?f r—r|

[0]=0(r.1—7Ir—rI)

Information from point r’ propagates at speed of light.

i

The potential at r can only be affected by conditions at r’ at a retarded time t-|r-r’|/c



Retarded Potentials

v' Retarded time refers to conditions at the point r’ that existed at
a time earlier than t by time required for light to travel between r and r’

v" Information from point r’ propagates at speed of light, so
potential at r can be affected by conditions of r’ at this retarded time

v’ Solutions with advanced time are not permitted physically

For given charge and current density first find the retarded potentials
and then determine Eand B




Retarded potential of single moving charges :
Lienard-Wiechart potentials

Particle of charge g moving along a trajectory r=r(t), velocity u(t)=.r0(t)

Charge and current density p(r, I) = q8(l’ - l‘o(t)).
i(r.1)=qu(2)8(r—ro(1))

q=f0(l',1)d3l‘. qu=fj(r,t)d3r.

| |

Total Charge Total Current



Reterded potential of single moving charges :
Lienard-Wiechart potentials

Particle of charge g moving along a trajectory r=r(t), velocity u(t)=r(t)

Charge and current density p(l‘, 1) = 48(r - ro(t))'

i(r,2) = qu(2)8(r —re(1))

d”

o(r,1) = f[

1

—> Scalar Potential

[0]=0(r.i- —C-lr—r'l)

o(r, 1) = f d’r f ar 21 8(t' —t+|r—r]/c).

r—r|



Retarded potential of single moving charges :
Lienard-Wiechart potentials

Particle of charge g moving along a trajectory r=r,(t), velocity u(t)=r.0(t)
Charge and current density P(l', 1) = q8(r - l'o(f))-
j(r,1)=qu(2)8(r—ry(1))

dJ’
l f[ Scalar Potential
PR r.t —> Scalar Potentia
Q(r,t Clr rl) o( ) r—r]

I

2]

¢(r,t)=fd3r’fdt’ pLr, ! ,) 8(t'—t+|r—rl/c).

r—r|

| a=Jornd’

o(r,0)=q [ 8(r' = 1+|r—ro(1)|/c)

Ir— "o(’ )]



Retarded potential of single moving charges :
Lienard-Wiechart potentials

o(r,1)= qf8(t —t+|r—r,(1')|/c) Ir— ro(t )|
i R(7')=r—ry(r).

o(r,1) =g [ R N2)8(t — 1+ R(2))/c)dt’

Rir, t)

Particle position

at¢
. 0 function
8 Path of A value of t'=t_, given by,
particle
B —
C(t o tret) - R([rct)'

Particle position
atr .




Retarded potential of single moving charges :

Lienard-Wiechart potentials
o(r,1) =g [ R N2)8(t — 1+ R(2))/c)dt’

Ar,t)=4 f u(?)R ~'()8(r' — t+ R(1)) ) c)dr’

c

Fig : Radiation field at R from position of
the radiating particle at the retarded tirmer 0

Particle position

at¢ :
. 6 function
8 Path of A value of t'=t , given by,
particle
8 C(t-trct)=R(Iret)'

Particle position
ate,,,




Retarded potential of single moving
charges : Lienard-Wiechart potentials

Change the variable from t’ > t” |
"=1—1+[R()/c) ===  di"=di’+—R(r)dl

= [ 1= Cn(yu(r) |ar

k(£)=1- %n(r’)-u(t’)



Retarded potential of single moving
charges : Lienard-Wiechart potentials

Change the variable from t’ > t” |
"=1—1+[R()/c) ===  di"=di’+—R(r)dl

R_?( )= R_"(t’)
2R(I)R(1')y= —2R(?")~u(?t"),

R
R

a”=|1- %n(t’)-u(t’)}dt’,

(1) =1— %n(t’)-u(t’)



Retarded potential of single moving charges :
Lienard-Wiechart potentials

Change the variable fromt’ 2> t” .
"=t —t+[R(t)/c] === dt"=di'+—R(t)dl

i
di” = [ |- %n(t’)-u(t’)Jdt’,
o(r,?)= qu “'(t’){ | — —:?n(t')°u(t’)] _18(1”)dt"

K(tret)qR(trcl) K(t’) =1- %n(f')ou([')

o(r,7)=

u
Lienard-Wiechart Potential o= [ ;qﬁ ] A= [ ;?(_R J




Retarded potential of single moving
charges : Lienard-Wiechart potentials

(][]

Differ from static electromagnetic theory in two ways

1) Extra factor k : Important for velocities close to light.
Tends to concentrate/beam potential into a narrow cone about particle velocity.
Beaming effect (will be detailed in coming lectures)

2) Quantities are evaluated at retarded time.

Differentiate the potentials to get electric field(E) and magnetic field(B)
(Jackson Section 14)




Velocity and Radiation field

ate,,,

Particle position

Rir, 1)

Particle position

at¢
u
Path of ﬂE -
particle C
k=|—n-*g

Fig : Radiation field at R from position of the radiating particle at the retarded time

ﬁ[ Rx{(n B)Xﬁ}} B(r,1) =[n X E(r,7)]

(n—B)(1- B2
E(r,t1)=g¢ { ETE
|
Velocity field Acceleration/Radiation field



Radiation field

n 1— B2 [ n
E(r,1)=4 [( Q(Rz ) %[-_R (n ﬁ)
i ¢
Velocity field Acceleration field/Radiation field

= 1/R?dependence

=  Only contributing term for
particle with constant velocity

= Generalization of the Coulomb’s
law to moving particles, approaches
to coulomb’s law when u<<c

= Electric filed always point towards
current position of the particle

1/R dependence
Proportional to particle’s acceleration
perpendicular ton




Radiation field

E(r,1)=q{ b + 2 x{(a-B)xh) |
Radiation field .
v E,ad(r,t)=%[:;§x{(n-—B)xB}].

Brad(r’t)z [anrad]‘

Erad, Brad, n : mutually perpendicular

[Eradl = 1Bragl



Radiation fields

Consider a particle originally moving at constant velocity along x axis is stopped
at x=0 and t=0

At t=1 the field outside of a radius c is radial and points to the position where
particle would have been if there was no deceleration (since no information

Is yet propagated to that distance)

But field inside the radius c is informed.

™

-

x=0 x=1

Graphical demonstration of 1/R acceleration field



Observables

From an empiricist’s point of view there are 4 observables for
radiation

e Energy Flux
e Direction

® Frequency
e Polarization

Polarimetry : study of polarization of incoming radiation



Polarization of electromagnetic
radiation

v’ Polarization is produced in various ways, including directly from some
radiation processes (e.g. cyclotron and synchrotron emission), from
differential absorption of radiation passing through the interstellar
medium, and perhaps most commonly from the scattering of radiation.

4 Property of a wave to have its Electric Field oscillating in a single plane
(plane polarized wave) or in a rotating plane (elliptically or even circular
polarized wave).

2 b7
A A A

[

Linear "\Circular + Elliptical




Polarization of electromagnetic
radiation

v’ Polarization is produced in various ways, including directly from some
radiation processes (e.g. cyclotron and synchrotron emission), from
differential absorption of radiation passing through the interstellar medium,
and perhaps most commonly from the scattering of radiation.

v’ Fractional polarizations detected from astronomical objects can be
very high
(pulsars: almost fully linearly polarised) to,
very low
(sun: one of the most sensitive polarization measurements ever made was by
James Kemp in 1987, who showed that the fractional linear polarization of light
from the Sun was ~ 10”7



Polarization of electromagnetic
radiation

v’ Polarimetry, is a method used to study the polarization of
incoming radiation and can provide substantial clues to the nature

of the source.

v’ Polarimetry is used to extract information such as the strength of
magnetic fields in the interstellar medium (ISM), provide evidence
for inflation by observations of the CMB polarization, motivate a
unified model for active galactic nuclei (AGN), probing emission

geometry for pulsars etc.



Polarization of electromagnetic
radiation

v' Study of polarization of electromagnetic plane waves from
astrophysical sources and modification of the polarization in the
medium.

v’ Plane waves are described by oscillating electric and magnetic
fields, whose field vectors are orthogonal to each other and the
direction of propagation.

v’ By convention, astronomers describe the polarization of light only
in terms of the electric field vector (because E and B are
orthogonal).



Maximum observed or expected degree of
polarization for different astronomical objects

Radio
galactic continuum 70%
quasars (integrated / resolved) 15% / 70%
Crab nebula 30%
pulsars (linear / circular) 80% / 70%
Optical
planets > 20%
interstellar dust acting on starlight (linear) 10%
interstellar dust acting on starlight (circular) 0.05%
Sun and A, stars (Zeeman effect) 100%
white dwarfs (Zeeman effect) 12%
symbiotic stars (Raman scattering) 8%
reflection nebulae (including Herbig—Harc and bipolar 60%
post—AGB stars and proto—PN (global polarisation) 30%
synchrotron (Crab nebula, blazars) 50%
synchrotron (extragalactic jets) 20%
Crab pulsar 10%
X-ray (mainly 'expected’)
solar flares 5%
Crab nebula 15%
accreting X-ray pulsars 80%
rotation—powered X—ray pulsars 10%
sopi N 0
glcif:ehgﬁaétin:ﬁj;?mmg effect Cyg X-1) 36?% Credit: Agnieszka Stowikowska
Seyfert accretion disc reprocessing 5% These are approximate numbers
~—ray (‘expected') May not be updated

pulsars 100%



Stokes parameters

v" The polarization can be described by the shape that the tip of E traced out
over the course of a period, and it can be linear, circular, or elliptical.

Stokes parameters were defined by George Gabriel Stokes in 1852, as a
mathematically convenient alternative to the more common description of
incoherent or partially polarized radiation in terms of its total intensity (l),
(fractional) degree of polarization (p), and the shape parameters of the
polarization ellipse



Polarization of electromagnetic
radiation
Specific case

—a i(ker—wr)
We discussed about monochromatic plane wave E= 4, Eo €

Oscillates along a,
Superposition of two such oscillations in perpendicular direction

E=(XE, +yE,))e " =E,e '
E, and E, are complex amplitude and can be written as

E,=5%,  E,=&,e"




Polarization of electromagnetic

radiation

Superposition of two such oscillations in perpendicular direction

E=(XE,+yE,)e " =E,e '

Considering real part of E, physical component of electric fields along x and y direction

E =&, cos(wt —¢,), E, = &, cos(wl —¢,).

X

These equations describe
Tip of E in x-y plane



Polarization of electromagnetic
radiation

Equations describing tip of E in x-y plane

E =&, cos(wt —¢,), E, = &, cos(wt —¢,)]

Figure traced out by tip of E is an ellipse

Equations for a general ellipse relative to its principal axes x” and y’

E!={,cos Bcoswt, E = — &y sinBsinwt




Polarization of electromagnetic
radiation

Superposition of two such oscillations in perpendicular direction

E=(XE,+yE,)e " =E,e '
Elliptically Polarized
E!={,cosBcoswl, E = —b,sinBsinwt

Equation of tip of electric field vector determines
type of polarisation

v (El/&ycos BY’ +(E]/&ysinB) =1

‘

Elliptically Polarized

O<B<T[/2 —_— Clockwise ellipse
Right-handed polarization

Anti-Clockwise ellipse

-/2<B<0 —— ro
Left-handed polarization




Polarization of electromagnetic
radiation

Two special cases of elliptical polarization

B=41/4 m==) Circular B=0,PB=r/2 m=m) Linear
|

l

Right-handed circularly polarized
Left handed circularly polarized

Linear C""“'Lafl (Right Hand) Eliiptical (Right Hand)
Polarization olarization Polarization




Polarization and stokes parameters

E!={,cosBcoswl, E = —b,sinBsinwt

Thus

E_= by(cos B cos xcoswt +sin Ssin x sinwi)

E, = &¢(cos Bsin x cos w! — sin B cos xsin wr)



Polarization and stokes parameters

E!={,cosBcoswl, E = —b,sinBsinwt
Thus ) ] )
E_= &y(cos B cos xcoswt +sin Ssin x sin wi)
E, = &y(cos Bsin x coswt —sin B cos xsin w?)
However,

E =& e, E,=&,e'*

E, =&, cos(wt —9,), E, =&, cos(wt —¢,)
onsider &, cos¢, =, cosBcosy,
o, sing, = by sin Bsiny,
b, cos ¢, = b, cos Bsiny,

b, sing, = — o, sin B cos x.



Polarization and stokes parameters

b, cos¢, = b, cosBcosy,
&, sing, = by sin Bsiny,
b, cos g, = b, cos Bsiny,
b, sing, = — fo, sin S cosx.

Stokes parameters

I=61+62=6}

Q=6 —63=56]cos2Bcos2x
U=26,6,cos(¢, —¢,)=&jcos2Bsin2x
V=26,6,sin(¢p, —¢,)=&gsin2p.

Ed
A
7~




Polarization and stokes parameters

2 Valid for
Stokes parameters J2= 02+ U2+ 2 validfor
I=63+63=8}
0 =6 — &3 =62 cos2Bcos2y &o= VI
U=26,6,cos(¢p, —¢,)=&5cos2Bsin2xy =) sin2 =L1/
V=26,6,sin(¢,—¢,)=&5sin2B. (an2y = g |

v Tis Proportional to intensity of wave (+ve)

v’ Circularity parameter measure ratios of axes of the ellipse
+ve for Right-handed polarization

-ve for left handed polarization

V=0 for linear polarization

v" Q /U measures orientation of ellipse relative to x-axis
Q=U=0 for circular polarization




Polarization and stokes parameters

Quasi monochromatic waves, E.(¢)= 51(t)ei""('), E,(1)= 62(t)ei¢2(‘)

I=(E\E})+{EE$)=(b1+&3)
Q=(E\E})—(E,E})={6}-&})
U={(EE}>+{E,E*)>=286,6,co8(¢, —,))

V= %((E,E;) —(EET))=Qb,b,sin(¢; —¢,))

I’>Q*+ U*+V?

Degree of polarization,

—_ Ia  O*+U?+V?

I/ I




Further reading

Poincare Sphere : a graphical tool to visualize different types of polarized radiation

0.0,1| Right-hand
19) Circular
Polarization

-1,0,0| Vertical
I Linear
Polarization

Relative Phase Shilt
(Vertical)

-45-degree |0,-1,0
Linear .
Polarization

Horizontal (1 0.0
Linear | _ .
Polarization
Relative &
Amplitude Shift
(horizomal)

Left-hand
Circular
Polarization

0,1,0| 45-degree
Linear
Polarization




Further reading

Mueller Matrix : Method for transforming Stokes parameters

Input
beam

v'\
(60
S/

S,

\S:i ),

Polarizing Output
"| element(s) : b:ap::
( A ¥ 8~ 5
Moo Moy Mga Mgy | Se
| my omyy omy, myg || S,
Moy Moy Moy Moy || S,
Mo My My, Mgy Sy )



End of Lecture 4

Reference: Rybicki Lightman Chapter 2,3

Next lecture : 22" August

Topic of next Lecture:
Radiation from moving charges (continued)
(Chapter 3 of Rybicki & Lightman)

Preparation: Lecture 4



