Electrodynamics and Radiative Processes I

Lecture 3 -
Spontaneous and stimulated emission of radiation Problem solving on Radiative Transfer

Bhaswati Bhattacharyya
bhaswati@ncra.tifr.res.in

IUCAA-NCRA Graduate School
August-September 2019

Lecture -2
 Questions raised in the class

Sun's BB spectrum peaks at which wavelength

Deviation from BB curve fitting in real cases

How do we know components of medium from emission/absorption lines

Stimulated and spontaneous emission of radiation Einstein Coefficients
 First derivation of Planck's function

The Quantum Theory of Radiation

A. Einstein (Received March, 1917)

The formal similarity of the spectral distribution curve of temperature radiation to Maxwell's velocity distribution curve is too striking to have remained hidden very long. Indeed, in the important theoretical paper in which Wien derived his displacement law

$$
\begin{equation*}
\rho=\nu^{3} f\left(\frac{\nu}{T}\right) \tag{1}
\end{equation*}
$$

"The formal similarity of the spectral distribution curve of temperature of radiation to Maxwell's velocity distribution curve is too striking to have remained hidden for very long." Einstein 2017

For a detailed discussion on this listen to lecture by G. Srinivasan : https://www.youtube.com/watch? v=o_h8djx68tw\&list=PL04QVxpjcnjidFFZjZ3m0aJ6pnKfBN5sA\&index=2

Einstein Coefficients

Stimulated absorption

$$
J_{\nu}=\frac{1}{4 \pi} \int I_{\nu} d \Omega
$$

Remember (from Lecture 1)
\mathbf{B}_{12} (dependent on radiation)

This occurs in presence of photons of energy hvo Energy difference between two levels is not infinitely sharp Described by a line profile function $\Phi(v)$

$$
\int_{0}^{\infty} \phi(\nu) d \nu=1
$$

$$
\bar{J} \equiv \int_{0}^{\infty} J_{\nu} \phi(\nu) d \nu
$$

$B_{12} \bar{J}^{\text {: }}$

Stimulated absorption rate

Einstein Coefficients

Stimulated emission
\mathbf{B}_{21} (dependent on radiation)

Photons of energy $h v_{o}$ is emitted.
Energy difference between two levels is not infinitely sharp Described by a line profile function $\Phi(v)$

$$
\int_{0}^{\infty} \phi(\nu) d \nu=1
$$

$$
\bar{J} \equiv \int_{0}^{\infty} J_{\nu} \phi(\nu) d \nu
$$

$B_{21} \bar{J}$
Stimulated emission rate

Einstein Coefficients

Spontaneous emission
A_{21} (independent of radiation)

Occurs when system in level 2 goes to 1, emits a photon of energy hvo It occurs even in absence of radiation fields
$\boldsymbol{A}_{21} \longrightarrow$ Spontaneous emission rate

Einstein Coefficients

Stimulated absorption
B_{12} (dependent on radiation)
Stimulated emission
Spontaneous emission
B_{21} (dependent on radiation) $\quad \mathrm{A}_{21}$ (independent of radiation)

$$
\text { Rate } 1 \text { to } 2 \text { = Rate } 2 \text { to } 1 \quad n_{1} \boldsymbol{B}_{12} \bar{J}=n_{2} A_{21}+n_{2} \boldsymbol{B}_{21} \bar{J}
$$

Einstein Coefficients

Stimulated absorption
B_{21} (dependent on radiation)
Stimulated emission
Spontaneous emission

Rate 1 to $2=$ Rate 2 to $1 \quad n_{1} B_{12} \bar{J}=n_{2} A_{21}+n_{2} B_{21} \bar{J}$.
In thermal equilibrium $\frac{n_{1}}{n_{2}}=\frac{g_{1} \exp (-E / k T)}{g_{2} \exp \left[-\left(E+h \nu_{0}\right) / k T\right]}=\frac{g_{1}}{g_{2}} \exp \left(h \nu_{0} / k T\right)$

Einstein Coefficients

Stimulated absorption
Stimulated emission B_{12} (dependent on radiation) B_{21} (dependent on radiation)

Spontaneous emission
A_{21} (independent of radiation)
Rate 1 to $2=$ Rate 2 to $1 \quad n_{1} B_{12} \bar{J}=n_{2} A_{21}+n_{2} B_{21} \bar{J}$.
In thermal equilibrium $\frac{n_{1}}{n_{2}}=\frac{g_{1} \exp (-E / k T)}{g_{2} \exp \left[-\left(E+h \nu_{0}\right) / k T\right]}=\frac{g_{1}}{g_{2}} \exp \left(h \nu_{0} / k T\right)$
Mean specific intensity

$$
\bar{J}=\frac{A_{21} / B_{21}}{\left(g_{1} B_{12} / g_{2} B_{21}\right) \exp \left(h \nu_{0} / k T\right)-1} \quad \Rightarrow \text { Plank Function }
$$

Einstein Coefficients

$$
\bar{J}=\frac{A_{21} / B_{21}}{\left(g_{1} B_{12} / g_{2} B_{21}\right) \exp \left(h \nu_{0} / k T\right)-1}
$$

$$
I_{\nu}=B_{\nu}(T)=\frac{2 h \nu^{3} / c^{2}}{e^{h \nu / k T}-1}
$$

Einstein Coefficients

$$
\bar{J}=\frac{A_{21} / B_{21}}{\left(g_{1} B_{12} / g_{2} B_{21}\right) \exp \left(h \nu_{0} / k T\right)-1}
$$

$$
I_{\nu}=B_{\nu}(T)=\frac{2 h \nu^{3} / c^{2}}{e^{h \nu / k T}-1}
$$

$$
g_{1} B_{12}=g_{2} B_{21}
$$

$$
A_{21}=\frac{2 h v^{3}}{c^{2}} B_{21}
$$

These relations must hold whether or not there is thermodynamic equilibrium.

Einstein Coefficients

$$
\bar{J}=\frac{A_{21} / B_{21}}{\left(g_{1} B_{12} / g_{2} B_{21}\right) \exp \left(h \nu_{0} / k T\right)-1}
$$

$$
I_{\nu}=B_{\nu}(T)=\frac{2 h \nu^{3} / c^{2}}{e^{h \nu / k T}-1}
$$

$$
g_{1} B_{12}=g_{2} B_{21}
$$

$$
A_{21}=\frac{2 h \nu^{3}}{c^{2}} B_{21}
$$

Wien Law hv >> kT

$$
I_{\nu}^{W}(T)=\frac{2 h \nu^{3}}{c^{2}} \exp \left(\frac{-h \nu}{k T}\right)
$$

Einstein Coefficients

$$
A_{21}=\frac{2 h v^{3}}{c^{2}} B_{21}
$$

Whenever there is stimulated emission, there has to be spontaneous emission.
$>$ Einstein coefficients connect the atomic properties $\mathrm{A}_{21}, \mathrm{~B}_{21}$ and B_{12} and have no relation to temperature.
> If we determine any one of these coefficient then that will allow us to determine other two.
> Einstein had to include the process of simulated emission as without it he could not get Planck's Law.

Einstein Coefficients

$$
A_{21}=\frac{2 h v^{3}}{c^{2}} B_{21}
$$

Whenever there is stimulated emission, there has to be spontaneous emission.
$>$ Einstein had to include the process of simulated emission as without it he could not get Planck's Law.
hu>>kT level 2 is sparsely populated compared to level 1 i.e. n2<<n1 Stimulated emission is unimportant compared to absorption, since these are proportional to n 2 and n 1 .

Emission coefficient in terms of Einstein Coefficients

Amount of energy emitted in volume $d V$, solid angle $d \Omega$ frequency $d v$ and time $d t$

$$
d E=j_{\nu} d \mathrm{~V} d \Omega d t d \nu, \quad \text { Lecture } 1
$$

Each atom contributes energy hv v_{0} distributed over 4π solid angle

Emission coefficient in terms of Einstein Coefficients

Amount of energy emitted in volume dV , solid angle $\mathrm{d} \Omega$ frequency dv and time dt

$$
\begin{equation*}
d E=j_{\nu} d \mathrm{~V} d \Omega d t d \nu \tag{Lecture1}
\end{equation*}
$$

Each atom contributes energy $h v_{0}$ distributed over 4π solid angle
Amount of energy emitted in volume $d V$, solid angle $d \Omega$ frequency $d v$ and time $d t$

$$
\mathrm{dE}=\left(h \nu_{0} / 4 \pi\right) \phi(\nu) n_{2} A_{21} d V d \Omega d \nu d t
$$

Emission coefficient in terms of Einstein Coefficients

Amount of energy emitted in volume dV , solid angle $\mathrm{d} \Omega$ frequency dv and time dt

$$
\begin{equation*}
d E=j_{\nu} d \mathrm{~V} d \Omega d t d \nu \tag{Lecture1}
\end{equation*}
$$

Each atom contributes energy hv ${ }_{0}$ distributed over 4π solid angle
Amount of energy emitted in volume $d V$, solid angle $d \Omega$ frequency $d v$ and time $d t$

$$
\begin{gathered}
\mathrm{dE}=\left(h \nu_{0} / 4 \pi\right) \phi(\nu) n_{2} A_{21} d V d \Omega d \nu d t \\
j_{\nu}=\frac{h \nu_{0}}{4 \pi} n_{2} A_{21} \phi(\nu)
\end{gathered}
$$

Absorption coefficient in terms of Einstein Coefficients

Amount of energy emitted in volume $d V$, solid angle $d \Omega$ frequency $d v$ and time $d t$

$$
\mathrm{dE}=d V d t d \Omega d \nu \frac{h \nu_{0}}{4 \pi} n_{1} B_{12} \phi(\nu) I_{\nu}
$$

Absorption coefficient in terms of Einstein Coefficients

Amount of energy emitted in volume $d V$, solid angle $d \Omega$ frequency $d v$ and time $d t$

$$
\begin{gathered}
d V d t d \Omega d \nu \frac{h \nu_{0}}{4 \pi} n_{1} B_{12} \phi(\nu) I_{\nu} \\
\alpha_{\nu}=\frac{h \nu}{4 \pi} n_{1} B_{12} \phi(\nu) .
\end{gathered}
$$

Absorption coefficient in terms of Einstein Coefficients

Amount of energy emitted in volume $d V$, solid angle $d \Omega$ frequency $d v$ and time $d t$

$$
d V d t d \Omega d \nu \frac{h \nu_{0}}{4 \pi} n_{1} B_{12} \phi(\nu) I_{\nu}
$$

Absorption coefficient

$$
\alpha_{\nu}=\frac{h \nu}{4 \pi} n_{1} B_{12} \phi(\nu)
$$

Absorption coefficient corrected for stimulated emission

$$
\alpha_{\nu}=\frac{h \nu}{4 \pi} \phi(\nu)\left(n_{1} B_{12}-n_{2} B_{21}\right)
$$

The doubt in Lecture 1 regarding not including stimulated emission is resolved Rybicki \& Lightman problem 1.7

Radiative transfer equation in terms of Einstein Coefficients

Replacing the emission and the absorption coefficients	
in the radiative transfer equation	$\frac{d I_{\nu}}{d s}=-\alpha_{\nu} I_{\nu}+j_{\nu}$

$$
\frac{d I_{\nu}}{d s}=-\frac{h \nu}{4 \pi}\left(n_{1} B_{12}-n_{2} B_{21}\right) \phi(\nu) I_{\nu}+\frac{h \nu}{4 \pi} n_{2} A_{21} \phi(\nu)
$$

$$
\text { Source function } \quad S_{v}=\frac{n_{2} A_{21}}{n_{1} B_{12}-n_{2} B_{21}}
$$

Radiative transfer equation in terms of Einstein Coefficients

Replacing the emission and the absorption coefficients in the radiative transfer equation

$$
\frac{d I_{\nu}}{d s}=-\frac{h \nu}{4 \pi}\left(n_{1} B_{12}-n_{2} B_{21}\right) \phi(\nu) I_{\nu}+\frac{h \nu}{4 \pi} n_{2} A_{21} \phi(\nu)
$$

$$
\alpha_{\nu}=\frac{h \nu}{4 \pi} n_{1} B_{12}\left(1-g_{1} n_{2} / g_{2} n_{1}\right) \phi(\nu)
$$

Radiative transfer equation in terms of Einstein Coefficients

Replacing the emission and the absorption coefficients in the radiative transfer equation

$$
\begin{aligned}
& \frac{d I_{\nu}}{d s}=-\frac{h \nu}{4 \pi}\left(n_{1} B_{12}-n_{2} B_{21}\right) \phi(\nu) I_{\nu}+\frac{h \nu}{4 \pi} n_{2} A_{21} \phi(\nu) \\
& \text { Source function } S_{\nu}=\frac{n_{2} A_{21}}{n_{1} B_{12}-n_{2} B_{21}} \\
& \qquad \alpha_{\nu}=\frac{h \nu}{4 \pi} n_{1} B_{12}\left(1-g_{1} n_{2} / g_{2} n_{1}\right) \phi(\nu) \\
& \qquad S_{\nu}=\frac{2 h \nu^{3}}{c^{2}}\left(\frac{g_{2} n_{1}}{g_{1} n_{2}}-1\right)^{-1}
\end{aligned}
$$

Special cases 1. Thermal emission

If the matter is in thermodynamic equilibrium

$$
\frac{n_{1}}{n_{2}}=\frac{g_{1}}{g_{2}} \exp \left(\frac{h \nu}{k T}\right)
$$

Special cases 1. Thermal emission

If the matter is in thermodynamic equilibrium

$$
\frac{n_{1}}{n_{2}}=\frac{g_{1}}{g_{2}} \exp \left(\frac{h \nu}{k T}\right)
$$

$$
\alpha_{\nu}=\frac{h \nu}{4 \pi} n_{1} B_{12}\left[1-\exp \left(\frac{-h \nu}{k T}\right)\right] \phi(\nu)
$$

Special cases 1. Thermal emission

If the matter is in thermodynamic equilibrium

$$
\begin{gathered}
\frac{n_{1}}{n_{2}}=\frac{g_{1}}{g_{2}} \exp \left(\frac{h \nu}{k T}\right) \\
\alpha_{\nu}=\frac{h \nu}{4 \pi} n_{1} B_{12}\left[1-\exp \left(\frac{-h \nu}{k T}\right)\right] \phi(\nu)
\end{gathered}
$$

Correction factor due to stimulated emission

Special cases 1. Thermal emission

If the matter is in thermodynamic equilibrium

$$
\begin{gathered}
\frac{n_{1}}{n_{2}}=\frac{g_{1}}{g_{2}} \exp \left(\frac{h \nu}{k T}\right) \\
\alpha_{\nu}=\frac{h \nu}{4 \pi} n_{1} B_{12}\left[1-\exp \left(\frac{-h \nu}{k T}\right)\right] \phi(\nu)
\end{gathered}
$$

Correction factor due to stimulated emission

$$
S_{\nu}=B_{\nu}(T)
$$

Special cases 2. Non-thermal emission

For all other cases where thermal equilibrium is not achieved

$$
\frac{n_{1}}{n_{2}} \neq \frac{g_{1}}{g_{2}} \exp \left(\frac{h \nu}{k T}\right)
$$

Special cases 3. Inverted Populations

For a system with thermal equilibrium we have

It is possible to put enough atoms in the upper state so that we have population inversion

$$
\frac{n_{1}}{g_{1}}<\frac{n_{2}}{g_{2}}
$$

Absorption coefficient is negative

$$
\alpha_{\nu}<0
$$

Einstein Coefficients

From a quantum electrodynamic treatment of spontaneous emission, it may be shown

$$
A_{\mathrm{UL}} \approx \frac{64 \pi^{4}}{3 h c^{3}} \nu_{\mathrm{UL}}^{3}\left|\mu_{\mathrm{UL}}\right|^{2}
$$

Radiation is due to change of dipole moment.

Further reading : https://www.cv.nrao.edu/ course/astr534/HILine.html

21cm emission line

Hydrogen is the most abundant element in the interstellar medium (ISM), but the symmetric H 2 molecule has no permanent dipole moment and hence does not emit a detectable spectral line at radio frequencies.

Neutral hydrogen (HI) atoms are abundant in low-density regions of the ISM. They are detectable in the $21 \mathrm{~cm}(\sim 1420 \mathrm{MHz})$ hyperfine line.
Two energy levels result from the magnetic interaction between quantized electron and proton spins. When the relative spins change from parallel to antiparallel, a photon is emitted.

$$
\begin{aligned}
A_{10} \approx 2.85 \times 10^{-15} \mathrm{~s}^{-1} \\
\tau_{1 / 2}=A_{10}^{-1} \approx 3.5 \times 10^{14} \mathrm{~s} \approx 11 \text { million years }
\end{aligned}
$$

However a large fraction of what we know about the universe comes from studying the universe at 21 cm

Problem solving On Radiative Transfer

Radiative transfer

(Lecture 1-3)

$F_{\nu}=\int I_{\nu} \cos \theta d \Omega$
$u_{\nu}(\Omega)=\frac{I_{v}}{c}$
$d I_{\nu}=j_{\nu} d s$
$\Longrightarrow \quad I_{\nu}(s)=I_{\nu}\left(s_{0}\right)+\int_{s_{0}}^{s} j_{\nu}\left(s^{\prime}\right) d s^{\prime}$
$d I_{\nu}=-\alpha_{\nu} I_{\nu} d s$.
$\alpha_{\nu}=n \sigma_{\nu}$.
$\frac{d I_{\nu}}{d s}=-\alpha_{\nu} I_{\nu}+j_{\nu}$

Radiative transfer

Low frequency regime

$$
\begin{aligned}
& T_{b}=\frac{c^{2}}{2 \nu^{2} k} I_{\nu} \\
& \frac{d T_{b}}{d \tau_{\nu}}=-T_{b}+T
\end{aligned}
$$

$$
T_{b}=T_{b}(0) e^{-\tau_{v}}+T\left(1-e^{-\tau_{\nu}}\right)
$$

Einstein's coefficients

$$
n_{1} B_{12} \bar{J}=n_{2} A_{21}+n_{2} B_{21} \bar{J} . \longmapsto \quad g_{1} B_{12}=g_{2} B_{21} \quad A_{21}=\frac{2 h \nu^{3}}{c^{2}} B_{21}
$$

Problem solving On Radiative Transfer

Type 1: Calculate luminosity, flux density , specific intensity, specific energy density, brightness temperature (example 1.1,1.3,1.5 of Rybicki \& Lightman)

Type 2: Optically thick/thin medium (example 1.8 of Rybicki \& Lightman)
Type 3: Emission and absorption lines (example 1.9 of Rybicki \& Lightman)
Type 4: Miscellaneous (example 1.7, 1.10 of Rybicki \& Lightman)

Example 1: Calculate the total flux at a point P coming from an isotropic, optically thick sphere of radius R.
Optically thick: emission comes from only surface
Isotropic: I is same for each point of the surface

Example 1: Calculate the total flux at a point P coming from an isotropic, optically thick sphere of radius R. Optically thick: emission comes from only surface Isotropic: I is same for each point of the surface

Solution

$$
\begin{aligned}
& F_{\nu}=I_{\nu} \int_{0}^{\theta_{c}} \int_{0}^{2 \pi} \cos \theta \sin \theta \mathrm{~d} \phi \mathrm{~d} \theta,=\pi I_{\nu} \sin ^{2} \theta_{c}, \\
& F_{\nu}=\pi I_{\nu}\left(\frac{R}{r}\right)^{2}
\end{aligned}
$$

Example 2: Upon reaching a planet, part of the central star radiation will be reflected and the rest will be absorbed and re-emitted as a cooler blackbody. In the spectra of planets both of these components are observed. Consider the case of Jupiter, with radius $R_{J}=7.1 \times 10^{9} \mathrm{~cm}$ and mean orbital radius $a_{j}=7.8 \times 10^{13} \mathrm{~cm}$. Assume that the spectrum of the Sun is a perfect blackbody.
(a) Suppose that Jupiter perfectly reflects 10% of the light coming from the Sun. Calculate its reflected luminosity. At which wavelength does it peak? In which spectral band is it observed?
(b) At which wavelength does the re-emitted luminosity peaks? In which spectral band is it observed?

Example 2: Upon reaching a planet, part of the central star radiation will be reflected and the rest will be absorbed and re-emitted as a cooler blackbody. In the spectra of planets both of these components are observed. Consider the case of Jupiter, with radius $R_{J}=7.1 \times 10^{9} \mathrm{~cm}$ and mean orbital radius $a_{J}=7.8 \times 10^{13} \mathrm{~cm}$.
Assume that the spectrum of the Sun is a perfect blackbody.
(a) Suppose that Jupiter perfectly reflects 10% of the light coming from the Sun. Calculate its reflected luminosity. At which wavelength does it peak? In which spectral band is it observed?
(b) At which wavelength does the re-emitted luminosity peaks? In which spectral band is it observed?

Hint for Solution:
(a) Solar flux reaching Jupiter

$$
\frac{L_{\odot}}{4 \pi a_{\mathrm{J}}^{2}}
$$

Reflected Luminosity $\quad L_{\text {refl }}=0.1 \times \frac{L_{\odot}}{4}\left(\frac{R_{\mathrm{J}}}{a_{\mathrm{J}}}\right)^{2}$
(b) For reflected emission

Find wave length from Wien's law

$$
4 \pi \sigma T_{\mathrm{eff}}^{4} R_{\mathrm{J}}^{2}=0.9 \times \frac{L_{\odot}}{4}\left(\frac{R_{\mathrm{J}}}{a_{\mathrm{J}}}\right)^{2}
$$

End of Lecture 3

Reference: Rybicki and Lightman Chapter 1.6
Lecture by G. Srinivasan : https://www.youtube.com/watch? v=o_h8djx68tw\&list=PL04QVxpjcnjidFFZjZ3m0aJ6pnKfBN5sA\&index=2

Next lecture : $19^{\text {th }}$ August

Topic of next Lecture:

Basic theory of radiation fields
(Chapter 2 of Rybicki \& Lightman)
Preparation: 2.1 and 2.2 of Rybicki \& Lightman
Read about Maxwell's equations

