Electrodynamics and Radiative Processes I

Lecture 11 - Synchrotron III +Problem solving

Bhaswati Bhattacharyya bhaswati@ncra.tifr.res.in
August-September 2019
IUCAA-NCRA Graduate School

Reference :

1) Rybicki and Lightman
2) Ghisellini: http://www.brera.inaf.it/utenti/gabriele/total.pdf

Synchrotron Radiation(Recap)

Synchrotron Radiation is radiation from a charge moving relativistically that is accelerated by a magnetic field.

Frequency of Gyration

$$
v_{\mathrm{B}}=\omega_{\mathrm{B}} / 2 \pi=\mathrm{qB} / 2 \pi m p
$$

Frequency of Cut-off

$$
\nu_{c}=\frac{3}{4 \pi} \gamma^{3} \omega_{B} \sin \alpha
$$

Synchrotron self-absorption

Synchrotron emission process is accompanied by absorption in which
a) A photon interacts with a charge in magnetic field and is absorbed giving up its energy to the charge
b) Stimulated emission (or negative absorption) in which a particle is induced to emit more strongly into a direction and at a frequency where photons are already present

These processes are related by Einstein's coefficients

Synchrotron self-absorption

Synchrotron emission process is accompanied by absorption in which
a) A photon interacts with a charge in magnetic field and is absorbed giving up its energy to the charge
b) Stimulated emission (or negative absorption) in which a particle is induced to emit more strongly into a direction and at a frequency where photons are already present

These processes are related by Einstein's coefficient

$$
\alpha_{\nu}=\frac{h \nu}{4 \pi} \sum_{E_{1}} \sum_{E_{2}}\left[n\left(E_{1}\right) B_{12}-n\left(E_{2}\right) B_{21}\right] \phi_{21}(\nu)
$$

$\varphi_{21}(v)$ is δ function that restricts summations to these states differing by an energy $h v=E_{2}-E_{1}$

Synchrotron self-absorption

$$
\alpha_{\nu}=\frac{h \nu}{4 \pi} \sum_{E_{1}} \sum_{E_{2}}\left[n\left(E_{1}\right) B_{12}-n\left(E_{2}\right) B_{21}\right] \phi_{21}(\nu)
$$

Now we want to write the absorption coefficient so that it contain the expression of power which we discussed,

$$
P(\omega)=\frac{\sqrt{3}}{2 \pi} \frac{q^{3} B \sin \alpha}{m c^{2}} F\left(\frac{\omega}{\omega_{c}}\right)
$$

It is convenient to write the emission in terms of the frequency v rather than ω. So we use $P\left(v, E_{2}\right)=2 \pi P(\omega)$.

Synchrotron self-absorption

$$
\alpha_{\nu}=\frac{h \nu}{4 \pi} \sum_{E_{1}} \sum_{E_{2}}\left[n\left(E_{1}\right) B_{12}-n\left(E_{2}\right) B_{21}\right] \phi_{21}(\nu)
$$

It is convenient to write the emission in terms of the frequency v rather than ω. So we use $P\left(v, E_{2}\right)=2 \pi P(\omega)$.

$$
g_{1} B_{12}=g_{2} B_{21},
$$

Relations between Einstein's coefficients

$$
A_{21}=\frac{2 h \nu^{3}}{c^{2}} B_{21}
$$

Total power emitted per frequency of a single particle can be written as

$$
\begin{aligned}
P\left(\nu, E_{2}\right) & =h \nu \sum_{E_{1}} A_{21} \phi_{21}(\nu) \\
& =\left(2 h \nu^{3} / c^{2}\right) h \nu \sum_{E_{1}} B_{21} \phi_{21}(\nu)
\end{aligned}
$$

This expression relates the spontaneous emission (A21) with the stimulated emission (B21)

Synchrotron self-absorption

$$
\alpha_{\nu}=\frac{h \nu}{4 \pi} \sum_{E_{1}} \sum_{E_{2}}\left[n\left(E_{1}\right) B_{12}-n\left(E_{2}\right) B_{21}\right] \phi_{21}(\nu)
$$

Absorption coefficient due to stimulated emission

$$
\frac{-h \nu}{4 \pi} \sum_{E_{1}} \sum_{E_{2}} n\left(E_{2}\right) B_{21} \phi_{21}=\frac{-c^{2}}{8 \pi h \nu^{3}} \sum_{E_{2}} n\left(E_{2}\right) P\left(\nu, E_{2}\right) .
$$

Absorption coefficient due to true absorption

$$
\begin{gathered}
\frac{h \nu}{4 \pi} \sum_{E_{1}} \sum_{E_{2}} n\left(E_{1}\right) B_{12} \phi_{21}=\frac{c^{2}}{8 \pi h \nu^{3}} \sum_{E_{2}} n\left(E_{2}-h \nu\right) P\left(\nu, E_{2}\right) \\
\alpha_{\nu}=\frac{c^{2}}{8 \pi h \nu^{3}} \sum_{E_{2}}\left[n\left(E_{2}-h \nu\right)-n\left(E_{2}\right)\right] P\left(\nu, E_{2}\right)
\end{gathered}
$$

Synchrotron self-absorption

Consider isotropic electron distribution function $f(p)$
$f(p) d^{3} p=$ number of electrons per unit volume with momentum in $d^{3} p$ about p

$$
\rrbracket^{a t h}
$$

(statistical weight of the particle, it has nothing to do with angular frequency; for electrons it's 2 (spin up/spin down states))

So we can make the substitution

$$
\sum_{2} \rightarrow \frac{\tilde{\omega}}{h^{3}} \int d^{3} p_{2}, \quad n\left(E_{2}\right) \rightarrow \frac{h^{3}}{\tilde{\omega}} f\left(p_{2}\right)
$$

Synchrotron self-absorption(Recap)

$$
\alpha_{\nu}=\frac{c^{2}}{8 \pi h \nu^{3}} \sum_{E_{2}}\left[n\left(E_{2}-h \nu\right)-n\left(E_{2}\right)\right] P\left(\nu, E_{2}\right) \quad+\quad \sum_{2} \rightarrow \frac{\tilde{\omega}}{h^{3}} \int d^{3} p_{2}, \quad n\left(E_{2}\right) \rightarrow \frac{h^{3}}{\tilde{\omega}} f\left(p_{2}\right) .
$$

So the absorption coefficient is

$$
\alpha_{\nu}=\frac{c^{2}}{8 \pi h \nu^{3}} \int d^{3} p_{2}\left[f\left(p_{2}^{*}\right)-f\left(p_{2}\right)\right] P\left(\nu, E_{2}\right)
$$

where $p_{2}{ }^{*}$ is the momentum corresponding to energy E_{2}-hv
Check if this formula produces correct results for thermal distribution of particles

$$
f(p)=K \exp \left[-\frac{E(p)}{k T}\right]
$$

Synchrotron self-absorption (Recap)

$$
\begin{aligned}
f\left(p_{2}^{*}\right)-f\left(p_{2}\right) & =K \exp \left(-\frac{E_{2}-h \nu}{k T}\right)-K \exp \left(-\frac{E_{2}}{k T}\right) \\
& =f\left(p_{2}\right)\left(e^{h \nu / k T}-1\right)
\end{aligned}
$$

The absorption coefficient is

$$
\left(\alpha_{\nu}\right)_{\text {thermal }}=\frac{\frac{c^{2}}{8 \pi h \nu^{3}}\left(e^{h \nu / k T}-1\right)}{} \xlongequal{\int} \quad \begin{aligned}
& \text { total power per unit volume } \\
& \text { per unit frequency range } 4 \pi \mathrm{j}_{v}
\end{aligned}
$$

$$
\left(\alpha_{\nu}\right)_{\text {thermal }}=\frac{j_{\nu}}{B_{\nu}(T)}
$$

Correct result for thermal emission Kirchhoff's Law

Synchrotron self-absorption

The next step is to consider the power law distribution of particles and get rid of $f(p)$

$$
\begin{aligned}
& \alpha_{\nu}=\frac{c^{2}}{8 \pi h \nu^{3}} \int d^{3} p_{2}\left[f\left(p_{2}^{*}\right)-f\left(p_{2}\right)\right] P\left(\nu, E_{2}\right) \\
& N(E) d E=f(p) 4 \pi p^{2} d p \\
& \alpha_{\nu}=\frac{c^{2}}{8 \pi h \nu^{3}} \int d E P(\nu, E) E^{2}\left[\frac{N(E-h \nu)}{(E-h \nu)^{2}}-\frac{N(E)}{E^{2}}\right] \quad\left(\text { replaced } \mathrm{E}_{2} \text { by } \mathrm{E}\right) \\
& \square h \mathrm{~h} \ll \mathrm{E} \\
& \alpha_{\nu}=-\frac{c^{2}}{8 \pi \nu^{2}} \int d E P(\nu, E) E^{2} \frac{\partial}{\partial E}\left[\frac{N(E)}{E^{2}}\right] .
\end{aligned}
$$

Synchrotron self-absorption

$$
\begin{aligned}
& \alpha_{\nu}=-\frac{c^{2}}{8 \pi \nu^{2}} \int d E P(\nu, E) E^{2} \frac{\partial}{\partial E}\left[\frac{N(E)}{E^{2}}\right] \\
& N(E)=K E^{2} e^{-E / k T} \\
& \left(\alpha_{\nu}\right)_{\text {thermal }}=\frac{c^{2}}{8 \pi \nu^{2} k T} \int N(E) P(\nu, E) d E=\frac{j_{\nu} c^{2}}{2 \nu^{2} k T}
\end{aligned}
$$

This is Kirchhoff's law in Rayleigh-Jeans Regime (expected as hv<< E)

Synchrotron self-absorption

The last step is to consider the power law distribution of particles and get rid of $f(p)$

$$
N(E) d E=\mathrm{C} E^{-p} d E
$$

Do some algebra (Following R\&L Sect 6.8)

$$
\alpha_{\nu}=\frac{\sqrt{3} q^{3}}{8 \pi m}\left(\frac{3 q}{2 \pi m^{3} c^{5}}\right)^{p / 2} C(B \sin \alpha)^{(p+2) / 2} \Gamma\left(\frac{3 p+2}{12}\right) \Gamma\left(\frac{3 p+22}{12}\right) \nu^{-(p+4) / 2}
$$

$$
S_{\nu}=\frac{j_{\nu}}{\alpha_{\nu}}=\frac{P(\nu)}{4 \pi \alpha_{\nu}} \propto \nu \stackrel{S / 2}{\longrightarrow} \text { Independent of } \mathrm{p}
$$

Note that the slope is not 2 as in the Rayleigh-Jeans regime, but it's 5/2.
Here we do not have (and cannot have) a thermal distribution of particles emission is non thermal

Synchrotron self-absorption

Synchrotron spectrum from power-law distribution of electrons

Synchrotron self-absorption

$\nu_{t} \propto\left[R K B^{(p+2) / 2}\right]^{2 /(p+4)}$
Self absorption frequency: marks the transition from optically thin to thick Ghisellini: http://www.brera.inaf.it/utenti/gabriele/total.pdf

Synchrotron

Radiative processes at a glance + few problems from each topic

Radiativetransfer

We can measure the following quantities:
\checkmark The energy in the radiation as a function of
a) position on the sky
b) frequency
\checkmark The radiation's polarisation

From these measurements we can hope to determine
\checkmark Physical parameters of the source (e.g. temperature, composition, size)
\checkmark The radiation mechanism
\checkmark The physical state of the matter

Need to understand the difference between often used terms: luminosity, flux density, specific intensity and specific energy density.

Radiative transfer

(Lecture 1-3)

$F_{\nu}=\int I_{\nu} \cos \theta d \Omega$
$u_{\nu}(\Omega)=\frac{I_{v}}{c}$
$d I_{\nu}=j_{\nu} d s$
$\Longrightarrow \quad I_{\nu}(s)=I_{\nu}\left(s_{0}\right)+\int_{s_{0}}^{s} j_{\nu}\left(s^{\prime}\right) d s^{\prime}$
$d I_{\nu}=-\alpha_{\nu} I_{\nu} d s$.
$\alpha_{\nu}=n \sigma_{\nu}$.
$\frac{d I_{\nu}}{d s}=-\alpha_{\nu} I_{\nu}+j_{\nu}$

Radiative transfer

Low frequency regime

$$
\begin{aligned}
& T_{b}=\frac{c^{2}}{2 \nu^{2} k} I_{\nu} \\
& \frac{d T_{b}}{d \tau_{\nu}}=-T_{b}+T
\end{aligned}
$$

$$
T_{b}=T_{b}(0) e^{-\tau_{v}}+T\left(1-e^{-\tau_{\nu}}\right)
$$

Einstein's coefficients

$$
n_{1} B_{12} \bar{J}=n_{2} A_{21}+n_{2} B_{21} \bar{J} . \longmapsto \quad g_{1} B_{12}=g_{2} B_{21} \quad A_{21}=\frac{2 h \nu^{3}}{c^{2}} B_{21}
$$

Example 1: Calculate the total flux at a point P coming from an isotropic, optically thick sphere of radius R.
Optically thick: emission comes from only surface
Isotropic: I is same for each point of the surface

Example 2: Upon reaching a planet, part of the central star radiation will be reflected and the rest will be absorbed and re-emitted as a cooler blackbody. In the spectra of planets both of these components are observed. Consider the case of Jupiter, with radius $R_{J}=7.1 \times 10^{9} \mathrm{~cm}$ and mean orbital radius $a_{j}=7.8 \times 10^{13} \mathrm{~cm}$. Assume that the spectrum of the Sun is a perfect blackbody.
(a) Suppose that Jupiter perfectly reflects 10% of the light coming from the Sun. Calculate its reflected luminosity. At which wavelength does it peak? In which spectral band is it observed?
(b) At which wavelength does the re-emitted luminosity peaks? In which spectral band is it observed?

Basic Theory of Radiation Fields (Lecture-4)

Maxwell's equation

$$
\begin{array}{cc}
\nabla \cdot \mathbf{D}=4 \pi \rho & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} & \nabla \times \mathbf{H}=\frac{4 \pi}{c} \mathrm{j}+\frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}
\end{array}
$$

Poynting's theorem

$$
\mathbf{j} \cdot \mathbf{E}+\frac{1}{8 \pi} \frac{\partial}{\partial t}\left(\epsilon E^{2}+\frac{B^{2}}{\mu}\right)=-\nabla \cdot\left(\frac{c}{4 \pi} \mathbf{E} \times \mathbf{H}\right)
$$

Degree of polarization
Radiation Spectrum

$\Delta \omega \Delta t>1$

$$
I \equiv \mathcal{E}_{1}^{2}+\mathcal{E}_{2}^{2}=\mathcal{E}_{0}^{2}
$$

$$
\Pi=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

Polarization and stokes parameter

$$
I^{2}=Q^{2}+U^{2}+V^{2}
$$

$$
\begin{aligned}
& Q \equiv \mathscr{E}_{1}^{2}-\mathscr{E}_{2}^{2}=\mathscr{E}_{0}^{2} \cos 2 \beta \cos 2 \chi \\
& U \equiv 2 \mathcal{E}_{1} \mathscr{E}_{2} \cos \left(\phi_{1}-\phi_{2}\right)=\mathscr{E}_{0}^{2} \cos 2 \beta \sin 2 \chi \\
& V \equiv 2 \mathcal{E}_{1} \mathscr{E}_{2} \sin \left(\phi_{1}-\phi_{2}\right)=\mathscr{E}_{0}^{2} \sin 2 \beta
\end{aligned}
$$

Dipole approximation (Lecture-5)

Differences in retarded time across source is negligible

$$
\mathbf{E}_{\mathrm{rad}}=\frac{\mathbf{n} \times(\mathbf{n} \times \ddot{\mathbf{d}})}{c^{2} R_{0}} \Longleftrightarrow \frac{d P}{d \Omega}=\frac{\ddot{\mathrm{d}}^{2}}{4 \pi c^{3}} \sin ^{2} \Theta, \Longleftrightarrow P=\frac{2 \ddot{\mathbf{d}}^{2}}{3 c^{3}}
$$

Spectrum of radiation for dipole approximation $\quad \frac{d W}{d \omega}=\frac{8 \pi \omega^{4}}{3 c^{3}}|\hat{d}(\omega)|^{2}$

$$
\mathbf{d}=-\left(\frac{e^{2} E_{0}}{m \omega_{0}^{2}}\right) \epsilon \sin \omega_{0} t .
$$

Thomson scattering cross section

$$
\begin{gathered}
\left(\frac{d \sigma}{d \Omega}\right)_{\text {polarized }}=\frac{e^{4}}{m^{2} c^{4}} \sin ^{2} \Theta=r_{0}^{2} \sin ^{2} \Theta \\
\sigma=\int \frac{d \sigma}{d \Omega} d \Omega=2 \pi r_{0}^{2} \int_{-1}^{1}\left(1-\mu^{2}\right) d \mu .=\frac{8 \pi}{3} r_{0}^{2}=\sigma_{T} \sim 0.66 \times 10^{-24} \mathrm{~cm}^{2}
\end{gathered}
$$

Problem solving

Example 1 An optically thin cloud surrounding a luminous object is estimated to be 1 pc in radius. If the central object is clearly seen, what is an upper bound for the electron density of the cloud, assuming that the cloud is homogeneous.

Problem solving

Example 2: Consider a particle of mass m and charge e moving ($v \ll c$) in a constant magnetic field B. Show that the frequency of circular motion is $\omega_{B}=e B /$ mc. Find out total emitted power. (RL 3.2)

Relativity in Electrodynamics (Lecture 6)

Special theory of relativity
Length contraction (length of a moving rod appears smaller) $\quad L=\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2} L_{0}$
Time dilation (moving clock appears slower)

$$
T=t_{2}-t_{1}=\gamma\left(t_{2}^{\prime}-t_{1}^{\prime}\right)=\gamma T_{0}
$$

Transformation of velocities $\quad u_{\| \|}=\frac{u_{\|}^{\prime}+v}{\left(1+v u_{\|}^{\prime} / c^{2}\right)}, \quad u_{\perp}=\frac{u_{\perp}^{\prime}}{\gamma\left(1+v u_{\|}^{\prime} / c^{2}\right)}$
Addition of velocities
Beaming effect $\boldsymbol{\theta} \sim \frac{\mathbf{1}}{\boldsymbol{\gamma}}$
Energy of a moving body $E_{k}=m_{0} c^{2} / V\left(1+v^{2} / c^{2}\right)$
Relativistic Doppler effect $\quad \omega=\frac{2 \pi}{\Delta t_{A}}=\frac{\omega^{\prime}}{\gamma\left(1-\frac{v}{c} \cos \theta\right)}$
Problems based on these relations

Proper time

$$
c^{2} d \tau^{2}=c^{2} d t^{2}-\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

Four vectors

$$
\begin{aligned}
& \text { Space-time is a four-vector: } x^{\mu}=[c t, x] \\
& \text { For } \mu=0,1,2,3
\end{aligned}
$$

Relativity in Electrodynamics (Lecture 6)

Examples of four vectors
Space-time is a four-vector: $\mathrm{X}^{\mu}=[\mathrm{ct}, \mathbf{x}]$

Four-vectors have Lorentz transformations between two frames with uniform relative velocity v:

$$
\begin{aligned}
& x^{\prime}=\gamma(x-\beta c t) ; \quad c t^{\prime}=\gamma(c t-\beta x) \\
& x^{\mu} x^{v}=c^{2} t^{2}-|x|^{2}=c^{2} t^{2}-\left|x^{\prime}\right|^{2}=s^{2}
\end{aligned}
$$

Charge/current four-vector $\quad \mathrm{J}^{\mu}=[\mathrm{c} \rho, \mathrm{J}] \quad$ Potential four-vector $\quad A^{\mu}=\left[\frac{V}{c}, \mathbf{A}\right]$
Continuity equation, Lorentz gauge condition, Poisson's equations in terms of four vectors
Electromagnetic field tensor

$$
F^{\mu \nu}=\frac{\partial A_{\nu}}{\partial x^{\mu}}-\frac{\partial A_{\mu}}{\partial x^{\nu}}
$$

Express Maxwell's equations in terms of electromagnetic field tensor

Relativity in Electrodynamics (Lecture 6)

Method of virtual quanta

Fields are mostly transverse (in y direction) since $\left(\operatorname{Max~}_{\mathrm{E}}\right) /\left(\mathrm{Max}_{\mathrm{E}}\right)=Y$
Fields of the moving charges are concentrated in the plane transverse to its motion into an angle of order of $1 / \gamma$

$$
\begin{aligned}
& P=\frac{d W}{d t}, \quad P^{\prime}=\frac{d W^{\prime}}{d t^{\prime}} \\
& P=\frac{2 q^{2}}{3 c^{3}} \mathbf{a}^{\prime} \cdot \mathbf{a}^{\prime}=\frac{2 q^{2}}{3 c^{3}}\left(a_{\|}^{\prime 2}+a_{\perp}^{\prime 2}\right)=\frac{2 q^{2}}{3 c^{3}} \gamma^{4}\left(a_{\perp}^{2}+\gamma^{2} a_{\|}^{2}\right)
\end{aligned}
$$

Relativity

Example 1: A source has a specific intensity I_{v} and is moving relativistically with respect to a stationary observer (in the reference frame K). Derive the relationship between the specific intensity measured by an observer in the reference frame K and the specific intensity seen in the comoving frame K_{0} (i.e., the frame where the source is at rest).

Bremsstrahlung (Lecture 7,8)

$\checkmark \quad$ Electrons in a plasma are accelerated by encounters with massive ions.
\checkmark This is the dominant continuum emission mechanism in thermal plasmas.
\checkmark An important coolant for plasmas at high temperature.

Bremsstrahlung (Lecture 7,8)

Emissivity (energy emitted per unit volume per unit time per unit frequency)

$$
\frac{d W}{d V d t d \nu}=\frac{2^{5} \pi e^{6}}{3 m c^{3}}\left(\frac{2 \pi}{3 k m}\right)^{1 / 2} T^{-1 / 2} Z^{2} n_{e} n_{i} e^{-h \nu / k T} \vec{g}_{f f}
$$

$$
\varepsilon_{\nu}^{f f} \equiv \frac{d W}{d V d t d \nu}=6.8 \times 10^{-38} Z^{2} n_{e} n_{i} T^{-1 / 2} e^{-h \nu / k T} \bar{g}_{f f}
$$

$$
\varepsilon^{f f} \equiv \frac{d W}{d t d V}=1.4 \times 10^{-27} T^{1 / 2} n_{e} n_{i} Z^{2} \bar{g}_{B}
$$

Free-free absorption coefficient

$$
\begin{aligned}
& \alpha_{\nu}^{f f}=\frac{4 e^{6}}{3 m h c}\left(\frac{2 \pi}{3 k m}\right)^{1 / 2} T^{-1 / 2} Z^{2} n_{e} n_{i} \nu^{-3}\left(1-e^{-h \nu / k T}\right) \bar{g}_{f f} \\
& \alpha_{\nu}^{f f}=3.7 \times 10^{8} T^{-1 / 2} Z^{2} n_{e} n_{i} \nu^{-3}\left(1-e^{-h \nu / k T}\right) \bar{g}_{f f} .
\end{aligned}
$$

Bremsstrahlung
 (Lecture 7,8)

\checkmark At low $v, \tau_{v} \gg 1$

Black body like spectrum
\checkmark At high $v, \tau_{v} \ll 1$
 Flat spectrum

Turn over at hv=kT

Non thermal Bremsstrahlung

$$
\frac{d W}{d V d t}=1.4 \times 10^{-27} T^{1 / 2} Z^{2} n_{e} n_{i} \bar{g}_{B}\left(1+4.4 \times 10^{-10} T\right)
$$

Problem solving (bremsstrahlung)

Example 1: A ionized hydrogen gas $(Z=1)$ of a number density ne $=n i=6 \times 10^{2}$ cm^{-3} of a size $10^{19} \mathrm{~cm}$ and initial temperature of 8000 K cools via thermal bremsstrahlung.
(a) How long does it take for the gas to cool down to $T=0$? Assume Gaunt factor $\mathrm{g}=1$.
(b) Find the luminosity of the entire nebula in terms of solar luminosities.

Problem solving (bremsstrahlung)

Example 2: Orion nebula is one of the the brightest HII regions on the sky. Its angular size is approximately 1 deg and we know that its distance is around 400 pc . This region emits thermal bremsstrahlung radiation with transition from optically thick to optically thin regime at 1 GHZ and cut-off frequency at 200 THz.
(a) In observations, the measure of the cutoff frequency is a way to determine the plasma temperature. Estimate the temperature of NGC1976.
(b) Assuming that NGC1976 has a spherical shape, estimate the number density of the region

Problem solving (bremsstrahlung)

Example 3: Consider a sphere of ionized hydrogen plasma that is undergoing spherical gravitational collapse. The sphere is held at constant isothermal temperature T_{0}, uniform density and constant mass M_{0} during the collapse, and has decreasing radius $R(t)$. The sphere cools by emission of bremsstrahlung radiation in its interior. At $t=t_{0}$ the sphere is optically thin.
(a) What is the total luminosity of the sphere as a function of $M_{0}, R(t)$ and T_{0} while the sphere is optically thin ?
(b) What is the luminosity of the sphere as a function of time after it becomes optically thick?
(c) Give an implicit relation, in terms of $R(t)$, for the time $t 1$ when the sphere becomes optically thick.
(d) Draw a qualitative curve of the luminosity as a function of time.

Problem solving
 (synchrotron)

Example 1 : Find an expression for the approximate electron number density ne $\left(\mathrm{cm}^{-3}\right)$ of synchrotron emitting electrons in radio, optical and x-ray band

Crab Nebula energy spectrum

Problem solving (synchrotron)

Example 2: Calculate characteristic synchrotron frequency for electrons with $Y^{\sim} 10^{4}$ at a magnetic field of 0.1 G . What is the frequency of gyration? Show that in this case photon energy in electrons rest frame is small compared to mc^{2}. What does this imply?

Problem solving (synchrotron)

Example 3: What is the typical energy of a scattered photon when 2 GeV cosmic ray electrons interact with the photons of the microwave background radiation, which has a temperature of $\mathrm{T}=2.73 \mathrm{~K}$. What is the Lorentz factor of incident electrons?

End of Lecture 11

Next Lecture : $17^{\text {th }}$ September
Topic of next Lecture:
Compton scattering
(Chapter 7 of Rybicki \& Lightman)

