# Electrodynamics and Radiative Processes I Lecture 9 – Bremsstrahlung

Bhaswati Bhattacharyya

bhaswati@ncra.tifr.res.in

IUCAA-NCRA Graduate School August-September 2018

Date : 6<sup>th</sup> September 2018

## Bremsstrahlung Layout

 (1) Emission from single speed electron pick rest frame of ion calculate dipole radiation correct for quantum effects (Gaunt factor)

(2) Emission from collection of electron
 Thermal bremsstrahlung
 Free-Free Absorption
 Non-thermal bremsstrahlung

(3) Relativistic bremsstrahlung (Virtual Quanta)

### Thermal Bremsstrahlung Recap

Free electrons are accelerated (decelerated) in the coulomb field of ionised nuclei and radiate energy)

Consider a charged particle at a specific impact parameter(b) and velocity(v).

When a charged particle accelerates it emits radiation.

Acceleration is a function of b, v and Z.

Intensity spectrum via Fourier Transform.

Integrate (exact details tricky – gives rise to the Gaunt Factor  $g_{ff}$ , which is a function of v,T,Z).

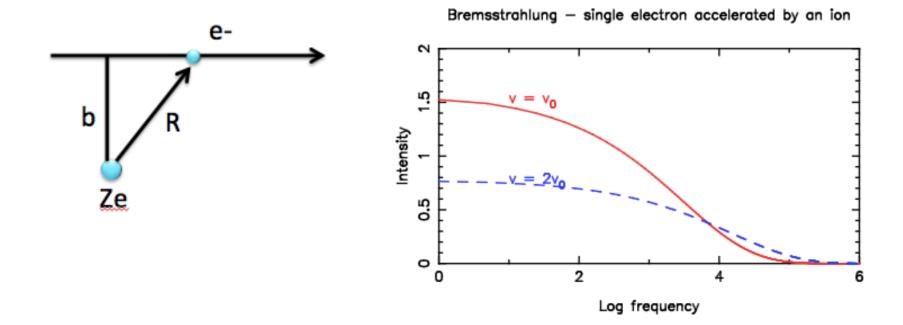
Include term for collision rate (depends on number densities  $n_e$  and  $n_i$ ). Integrate over v .

Assume plasma in thermal equilibrium  $\rightarrow$  Maxwellian distribution of v .

#### Bremsstrahlung (Recap) Emission from a single speed electron

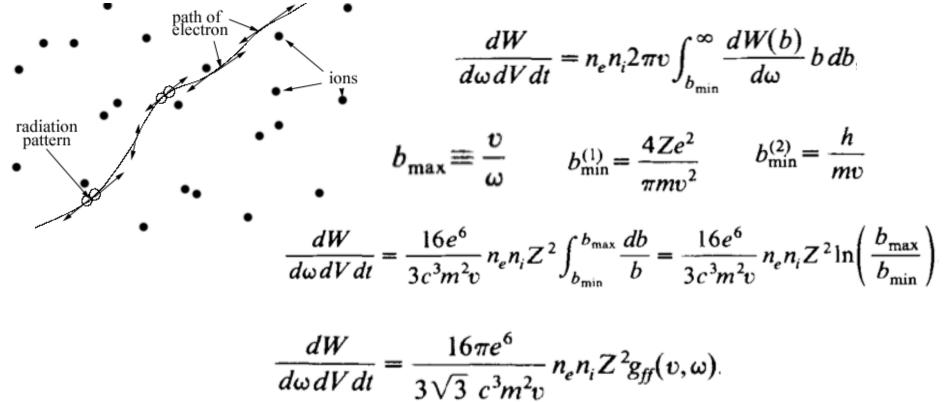
Emission from a single speed electron

$$\frac{dW(b)}{d\omega} = \begin{cases} \frac{8Z^2e^6}{3\pi c^3m^2v^2b^2}, & b \ll v/\omega\\ 0, & b \gg v/\omega. \end{cases}$$



#### Bremsstrahlung(Recap) Emission from multiple single speed electron

Bunch of electrons, all with the same speed, v, which interact with a bunch of ions.



#### **Thermal Bremsstrahlung Emission**

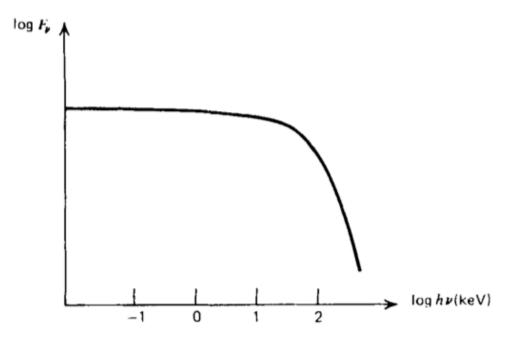
$$\frac{dW}{dV \, dt \, d\nu} = \frac{2^5 \pi e^6}{3mc^3} \left(\frac{2\pi}{3km}\right)^{1/2} T^{-1/2} Z^2 n_e n_i e^{-h\nu/kT} \overline{g}_{ff}$$
particle energy
high energy cutoff

Lower limit of electron velocity from the condition  $h\nu \leq \frac{1}{2}mv^2$  $v_{\min} \equiv (2h\nu/m)^{1/2}$ 

$$\varepsilon_{\nu}^{ff} \equiv \frac{dW}{dV \, dt \, d\nu} = 6.8 \times 10^{-38} Z^2 n_e n_i T^{-1/2} e^{-h\nu/kT} \bar{g}_{ff} = 4\pi j_{\nu}^{ff}.$$

$$\varepsilon^{ff} \equiv \frac{dW}{dt\,dV} = 1.4 \times 10^{-27} T^{1/2} n_e n_i Z^2 \bar{g}_B$$

#### Thermal Bremsstrahlung spectra



Consider an electron moving at a speed of v = 1000 km s<sup>-1</sup>.

Consider an electron moving at a speed of  $v = 1000 \text{ km s}^{-1}$ .

In case it would radiate all its kinetic energy in a single interaction  $\Delta E = hv = 1/2 mv^2$ 

So frequency(maximum) of the emitted radiation is  $\Delta E/h^{2}$  x10<sup>14</sup> Hz

Now assuming that the electron is part of population of particles for which v is the typical temperature  $T = \Delta E/k^{2} \times 10^{4} \text{ K}$ 

$$\varepsilon_{\nu}^{ff} \equiv \frac{dW}{dV \, dt \, d\nu} = 6.8 \times 10^{-38} Z^2 n_e n_i T^{-1/2} e^{-h\nu/kT} \overline{g}_{ff}$$

Cut off frequency depends only and is set when the exponential is equal to 1

hv=kT 
$$v_c = \frac{k}{h}$$
 T  $\sim 2x10^{10}$  Hz

So one can determine cut-off frequency for warm plasma (e.g. HII region, T~10<sup>4</sup> K), and hot plasma (in clusters of galaxies, T~10<sup>8</sup> K), and cut off for hot plasma will be at a higher frequency.

$$\varepsilon_{\nu}^{ff} \equiv \frac{dW}{dV \, dt \, d\nu} = 6.8 \times 10^{-38} Z^2 n_e n_i T^{-1/2} e^{-h\nu/kT} \overline{g}_{ff}$$

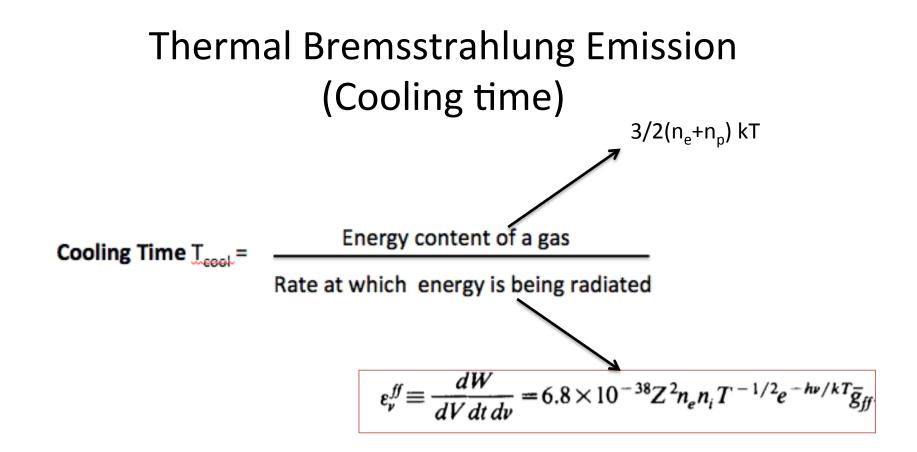
Cut off frequency depends only and is set when the exponential is equal to 1

$$hv=kT$$
  $v_c=\frac{k}{h}$  T  $\sim 2x10^{10}$  Hz

So one can determine cut-off frequency for warm plasma (e.g. HII region, T~10<sup>4</sup> K), and hot plasma (in clusters of galaxies, T~10<sup>8</sup> K), and cut off for hot plasma will be at a higher frequency.

Observationally one measures the the cutoff frequency and calculate the plasma temperature and hence velocity

Total emissivity does not depend on frequency (except the cut – off) and spectrum is flat

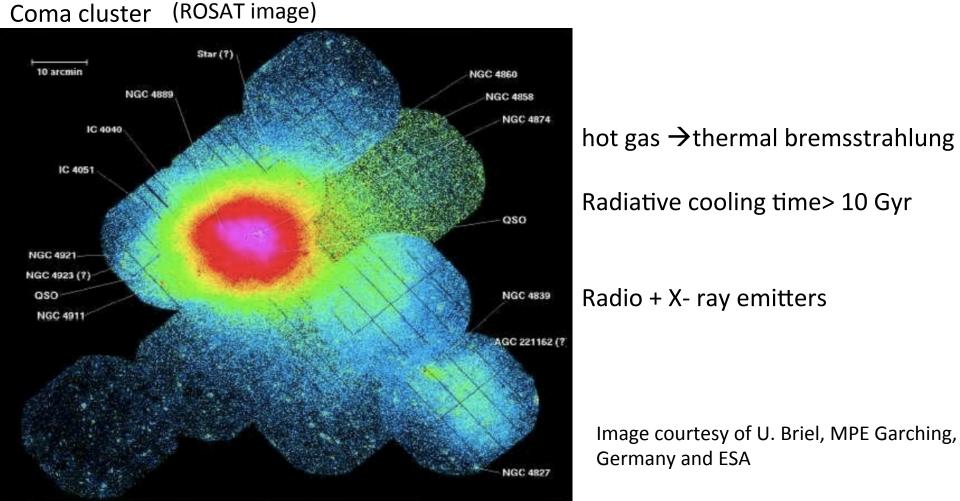


Bremsstrahlung is the main cooling process at temperatures above T~ 10<sup>7</sup> K

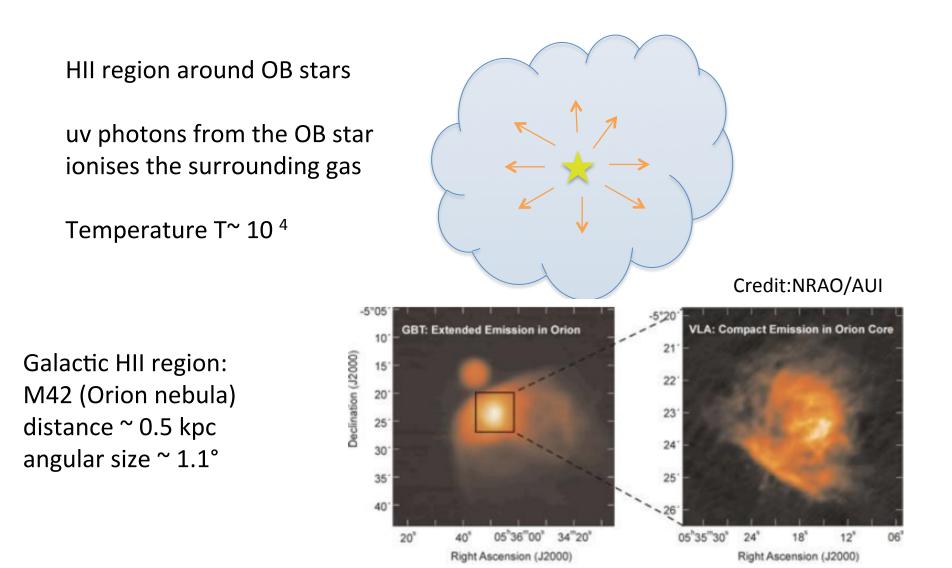
All galaxy clusters have bremsstrahlung emission

# Thermal Bremsstrahlung Example Cluster of galaxies

A galaxy cluster, or cluster of galaxies, is a structure consisting hundreds to thousands of galaxies bound together by gravity.



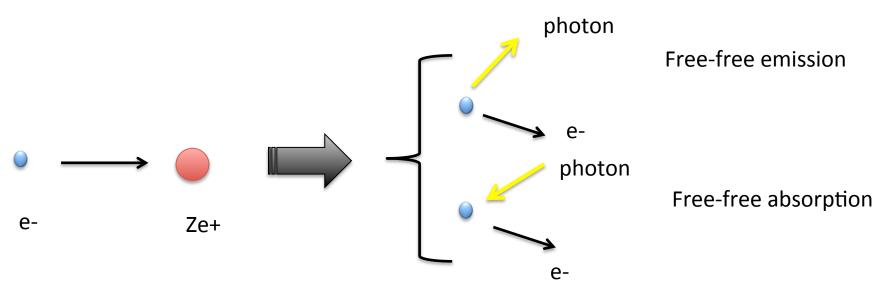
### Bremsstrahlung (free-free) emission Example



#### Bremsstrahlung emissivity in hot plasmas

|                  | Т (К)                    | Obs. of $\mathcal{E}_{V}^{ff}$  |
|------------------|--------------------------|---------------------------------|
| Solar flare      | 10 <sup>7</sup> (~ 1keV) | radio→ flat                     |
|                  |                          | X-ray $\rightarrow$ exponential |
| H II region      | 10 <sup>5</sup>          | radio→ flat                     |
| Orion            | 104                      | radio →flat                     |
| Sco X-1          | 10 <sup>8</sup>          | optical-flat                    |
|                  |                          | X-ray → flat/exp.               |
| Coma Cluster ICM | 10 <sup>8</sup>          | X-ray → flat/exp.               |

Credit : George F. Smoot

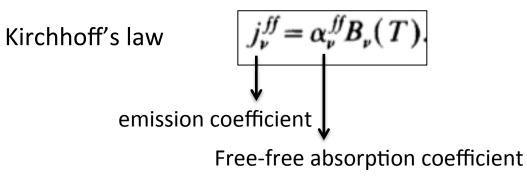


Free-free absorption :

Absorption of radiation by an electron moving in the field of an ion due to to the bremsstrahlung process

Absorption of radiation by an electron moving in the field of an ion due to to the bremsstrahlung process

Let us consider thermal free-free absorption



However we have

$$\frac{dW}{dt\,dV\,d\nu} = 4\pi j_{\nu}^{ff}.$$

$$\begin{split} \vec{j}_{\nu}^{ff} &= \alpha_{\nu}^{ff} B_{\nu}(T) \\ \vec{dt \, dV \, d\nu} &= 4\pi j_{\nu}^{ff} \\ \vec{dV \, dt \, d\nu} &= \frac{2^5 \pi e^6}{3mc^3} \left(\frac{2\pi}{3km}\right)^{1/2} T^{-1/2} Z^2 n_e n_i e^{-h\nu/kT} \vec{g}_{ff} \\ \vec{dV \, dt \, d\nu} &= \frac{2^5 \pi e^6}{3mc^3} \left(\frac{2\pi}{3km}\right)^{1/2} T^{-1/2} Z^2 n_e n_i e^{-h\nu/kT} \vec{g}_{ff} \\ \vec{dV \, dt \, d\nu} &= B_{\nu}(T) = \frac{2h\nu^3/c^2}{e^{h\nu/kT} - 1} \\ \text{Free-free absorption coefficient} \\ \alpha_{\nu}^{ff} &= \frac{4e^6}{3mhc} \left(\frac{2\pi}{3km}\right)^{1/2} T^{-1/2} Z^2 n_e n_i \nu^{-3} (1 - e^{-h\nu/kT}) \vec{g}_{ff}. \end{split}$$

Free-free absorption coefficient

$$\alpha_{\nu}^{ff} = \frac{4e^{6}}{3mhc} \left(\frac{2\pi}{3km}\right)^{1/2} T^{-1/2} Z^{2} n_{e} n_{i} \nu^{-3} (1 - e^{-h\nu/kT}) \bar{g}_{ff}$$

Evaluating the constants in C.G.S. units

$$\alpha_{\nu}^{ff} = 3.7 \times 10^8 T^{-1/2} Z^2 n_e n_i \nu^{-3} (1 - e^{-h\nu/kT}) \bar{g}_{ff}.$$

$$\downarrow$$
Unit cm<sup>-1</sup>

Free-free absorption coefficient in C.G.S. units

$$\alpha_{\nu}^{ff} = 3.7 \times 10^8 T^{-1/2} Z^2 n_e n_i \nu^{-3} (1 - e^{-h\nu/kT}) \bar{g}_{ff}.$$

Can find the optical depth now

Unit cm<sup>-1</sup>

Case-1  $h\nu \gg kT$  (e.g. X-rays)

The exponential is negligible and  $\alpha_v$  is proportional to T  $^{-1/2}$  V  $^{-3}$  is very small unless n<sub>e</sub> is very large

In X-rays, thermal bremsstrahlung emission can be treated as *optically thin* (except in stellar interiors)

Case-2  $h\nu \ll kT$  We are in Rayleigh-Jeans regime: Radio frequencies

$$\alpha_{\nu}^{ff} = \frac{4e^{6}}{3mkc} \left(\frac{2\pi}{3km}\right)^{1/2} T^{-3/2} Z^{2} n_{e} n_{i} \nu^{-2} \bar{g}_{ff},$$

Evaluating the constants in C.G.S. units

$$\alpha_{\nu}^{ff} = 0.018 T^{-3/2} Z^2 n_e n_i \nu^{-2} \bar{g}_{ff}.$$

Absorption can be important, even for relatively low  $n_e$  in the radio regime.

Case-2  $h\nu \ll kT$ , Rayleigh-Jeans regime: Radio frequencies

$$\alpha_{\nu}^{ff} = 0.018 T^{-3/2} Z^2 n_e n_i \nu^{-2} \bar{g}_{ff}.$$

Calculate optical depth  $au_{
u}=\int lpha_{
u}ds$ 

If optically thin, spectrum is as calculated before : flat until turnover.

If optically thick, spectrum is effectively blackbody.

Case-2  $h\nu \ll kT$ 

We are in Rayleigh-Jeans regime: Radio frequencies

$$\alpha_{\nu}^{ff} = 0.018 T^{-3/2} Z^2 n_e n_i \nu^{-2} \bar{g}_{ff}.$$

Optical depth

$$\tau \propto \int \frac{n^2 \, \bar{g}_{ff}(\nu)}{\nu^2 T^{3/2}} dl$$

Recap

$$I_{\nu} = (1 - e^{-\tau_{\nu}})B_{\nu}(T_e)$$

At low V,  $\tau_{
m v}$  >>1  $I_{
u} \propto B_{
u}(T_e) \propto 
u^2$ 

Black body like spectrum

Case-2  $h\nu \ll kT$ , We are in Rayleigh-Jeans regime: Radio frequencies

Optical depth 
$$au \propto \int rac{n^2 \, ar{g}_{ff}(
u)}{
u^2 T^{3/2}} dl$$

In this regime  $\ ar{g}_{ff}(
u) \propto 
u^{-0.1} T^{0.15}$ 

Recap 
$$I_{\nu} = (1 - e^{-\tau_{\nu}})B_{\nu}(T_e)$$

 $\checkmark$  At low V,  $au_{
m v}$  >>1  $I_{
u} \propto B_{
u}(T_e) \propto 
u^2$  Black body like spectrum

 $\checkmark$  At low V,  $au_{
m v}$  <<1  $I_{
m v} \propto au B_{
m v}(T_e) \propto 
u^{-0.1}$  Flat spectrum

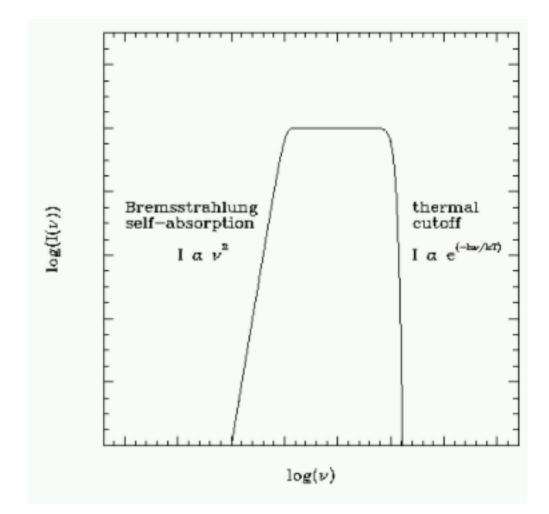
Case-2  $h\nu \ll kT$ , We are in Rayleigh-Jeans regime: Radio frequencies Optical depth  $\tau \propto \int \frac{n^2 \bar{g}_{ff}(\nu)}{\nu^2 T^{3/2}} dl$  $I_{\nu} = (1 - e^{-\tau_{\nu}}) B_{\nu}(T_e)$ 

 $\checkmark$  At low v,  $au_{
m v}$  >>1  $I_{
u} \propto B_{
u}(T_e) \propto 
u^2$  Black body like spectrum

✓ At low  $\nu$ ,  $\tau_{\nu} <<1$  Flat spectrum

Turnover when  $\tau_v \sim 1$ ,  $v \sim 1$  GHz for Orion

### **Bremsstrahlung Spectra**



Effect of optical thickness on the Bremsstrahlung spectrum.

At low frequencies due to self-absorption spectrum follow the Raleigh-Jeans law. (spectrum is typically seen in dense ionised gas such as found in star formation regions)

T is not a relevant concept any more, v must be used

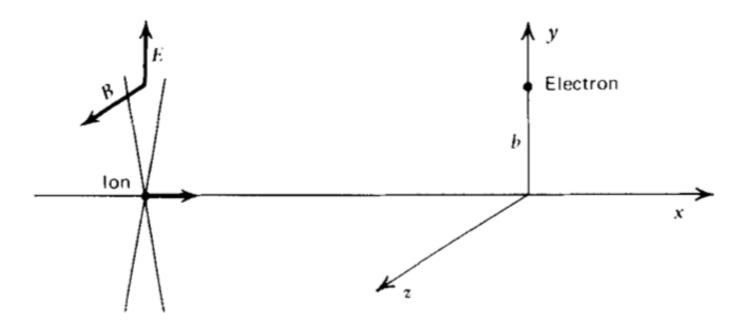
The typical velocities of the particles are now relativistic and energy (velocity) distribution is described by a power law

Analysis will be performed with the method of virtual quanta

Consider collision between an electron and a heavy ion of charge Ze

Normally ion moves slower than electrons. Let us consider a frame where electron is initially at rest and in that case the ion appears to move rapidly towards electron.

Ion moves along x-axis with velocity v. Electron is initially rest on y-axis at a distance b from the origin.



Electrostatic field of the ion is transformed in to a transverse pulse with |E|=|B|. To the electron this is a pulse of electromagnetic radiation.

This radiation then Compton scatters off electron to produce the detected radiation

Transforming back to the rest frame of the ion (lab frame) we obtain the bremsstrahlung emission of the ion.

Thus relativistic bramsstrahlung can be regarded as the Compton scattering of the virtual quanta of the ion's electrostatic field as seen in the electron's frame.

In the primed frame (the rest frame of electrons) the spectrum of the pulse of virtual quanta has the following form (as derived in Lecture -7), with v=c in ultra relativistic limit

$$\frac{dW'}{dA'd\omega'}(\operatorname{erg}\,\operatorname{cm}^{-2}\,\operatorname{Hz}^{-1}) = \frac{(Ze)^2}{\pi^2 b'^2 c} \left(\frac{b'\omega'}{\gamma c}\right)^2 K_1^2 \left(\frac{b'\omega'}{\gamma c}\right)$$

In the primed frame, i.e. in the rest frame of the electrons the spectrum of the pulse of virtual quanta has the following form (as derived in Lecture -7), with v=c in ultra relativistic limit

$$\frac{dW'}{dA'd\omega'}(\operatorname{erg}\,\operatorname{cm}^{-2}\,\operatorname{Hz}^{-1}) = \frac{(Ze)^2}{\pi^2 b'^2 c} \left(\frac{b'\omega'}{\gamma c}\right)^2 K_1^2 \left(\frac{b'\omega'}{\gamma c}\right)$$

In primed frame (rest frame of the electron)

$$\hbar\omega' \lesssim mc^2$$

Virtual quanta are scattered by electron according to Thomson scattering

| $\hbar\omega'$ | $>mc^2$ |
|----------------|---------|
|----------------|---------|

Virtual quanta are scattered by electron according to Compton scattering

Now since energy and frequency transform identically in Lorentz transformations,  $\frac{dW}{d\omega} = \frac{dW'}{d\omega'}$ 

Thus the emission in lab frame is

$$\frac{dW}{d\omega} = \frac{8Z^2e^6}{3\pi b^2c^5m^2} \left(\frac{b\omega}{\gamma^2c}\right)^2 K_1\left(\frac{b\omega}{\gamma^2c}\right) \qquad \text{Replacing} \\ b=b' \text{ and } \omega=\gamma\omega'$$

Energy per unit frequency emitted by collision of an ion and a relativistic electron at a impact parameter b

#### Thermal Bremsstrahlung (slide 16 of lecture 8) Emission from multiple single speed electron

Total spectrum for a medium with ion density  $n_i$  electron density  $n_e$  and fixed electron speed v

$$\frac{dW}{d\omega dV dt} = n_e n_i 2\pi v \int_{b_{\min}}^{\infty} \frac{dW(b)}{d\omega} b \, db_i$$

Flux of electrons (electrons per unit area per unit time) incident on one ion is  $n_e v$ 

The element of area is  $2\pi bdb$  about a single ion.

 $\mathbf{b}_{\min}$  is minimum value of impact parameter

For a plasma with electron and ion densities  $n_e$  and  $n_i$  we repeat the same treatment which we did for thermal bremsstrahlung

$$\frac{dW}{d\omega dV dt} = \frac{16e^6}{3c^3m^2v} n_e n_i Z^2 \int_{b_{\min}}^{b_{\max}} \frac{db}{b} = \frac{16e^6}{3c^3m^2v} n_e n_i Z^2 \ln\left(\frac{b_{\max}}{b_{\min}}\right) \longrightarrow \text{Thermal Bremsstrahlung}$$

v is replaced by c with electron and ion densities  $n_{\rm e}$  and  $n_{\rm i}$  we repeat the same treatment which we did for thermal bremsstrahlung

$$\frac{dW}{dt\,dV\,d\omega} \sim \frac{16Z^2 e^6 n_e n_i}{3c^4 m^2} \ln\left(\frac{0.68\gamma^2 c}{\omega b_{\min}}\right)$$

Non-thermal Bremsstrahlung In low-frequency limit hv <<γ mc<sup>2</sup>

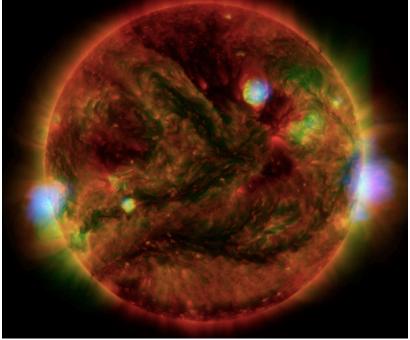
For a plasma with electron and ion densities n<sub>e</sub> and n<sub>i</sub> frequency integrated power

$$\frac{dW}{dV \, dt} = 1.4 \times 10^{-27} T^{1/2} Z^2 n_e n_i \bar{g}_B (1 + 4.4 \times 10^{-10} T)$$
Relativistic correction
Significant for very high temperatures

#### Solar wind:

ne ~ 4 – 7 cm<sup>-3</sup>  $v_{swind}$  ~ 300 – 900 km s<sup>-1</sup> T ~ 150, 000 K (not consistent with v!)

**Solar Flares**: brief and intense emission from sun's surface relativistic particles with power–law energy distribution

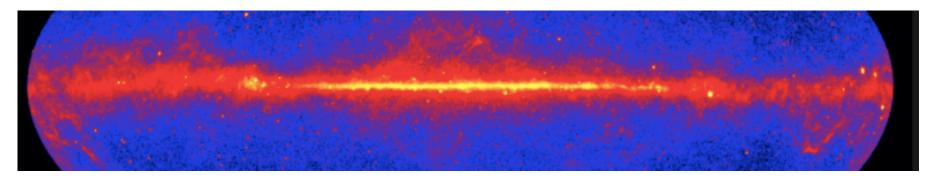


Flaring, active regions sun are highlighted in this image combining observations from several telescopes. Highenergy X-rays from NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) are shown in blue; low-energy X-rays from Japan's Hinode spacecraft are green; and extreme ultraviolet light from NASA's Solar Dynamics Observatory (SDO) is yellow and red.

Image credit: NASA/JPL-Caltech/GSFC/JAXA

#### Gamma-rays from the Galaxy

Gamma-ray emission is detected from our Galaxy is thought to arise from relativistic Bremsstrahlung from high energy electrons.



Milky way in Gamma-rays (Fermi LAT image)

The radiative energy is carried by photons with  $hv \sim E_e$ 

Energies in the range ~100 MeV, suggesting many relativistic electrons with  $\gamma$ ~100

### Bremsstrahlung Emission Summary

- ✓ Photon is emitted from accelerating electron in the Coulomb field of ion
- ✓ The energy of the photon can never exceed the kinetic energy of electron
- ✓ Generally the "classical" description of the phenomenon is adequate, the quantum mechanics requires an appropriate Gaunt Factor
- ✓ Individual interaction produces polarized radiation (fixed direction of E and B fields of the e-m wave wrt the acceleration)
- ✓ Overall the emission is unpolarized (random orientation of the plane of interaction)
- ✓ We have "thermal" or "relativistic" bremsstrahlung, depending on velocity/energy distribution of electrons.

# End of Lecture 9

Next Lecture : 11<sup>th</sup> September