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Recap	Lecture	5		

Maxwell’s	equa-on	with	source	terms	

Introduce	scalar	poten-al	Φ(r,t)	and	vector		poten-al	A(r,t)	

Expression	of	Φ(r,t)	and	A(r,t)		in	terms	of	κ	and	R	at	retarded	-me	

Expression	of	Electric	field	E	having	two	components	

Velocity	field	and	Radia-on	field		and	when	they	are	important	

Total	power	radiated	by	non	rela-vis-c	point	charge	when	it	accelerates	

Dipole	approxima-on	
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Dipole	approxima-on		

v	
v	

v	 v	
v	

v	

L	:	scale	of	the	system	

Differences	in	retarded	-me	can	be	ignored	if		
size	of	the	system	is	small	compared	to	wavelength		



Dipole	approxima-on		

Angular	distribu-on	of	dipole	radia-on	
	

dp/dΩ	

ü  Pa@ern	is	symmetric	about	dipole	
moment/accelera-on	

	
ü  Independent	of	velocity	
	
ü  Intensity	of	radia-on	is	zero	along		
						the	direc-on	of	accelera-on.	

Radia-on	pa@ern	of	a	half	wave	dipole	antenna	



Dipole	approxima-on		

Dipole	approxima-on	:		
Larmor’s	formula	extended	for	a	collec-on	of	non-rela-vis-c	par-cles				



“In	recogni-on	of	the	great	merits	of	his	
theore-cal	and	experimental	inves-ga-ons	on	
the	conduc-on	of	electricity	by	gases."	



Thomson	sca@ering	

Let	us	consider	applica-on	of	the	dipole	formula	in	a	process	in	which	a		
free	charge	radiates	in	response	to	an	incident	electromagne-c	wave			

Process	by	which	an	electromagne-c	wave	is	sca@ered	in	to	random	direc-ons		
by	a	free	electron.		

Applicable	for			hν<<mec2	



Thomson	sca@ering	

Consider	a	linearly	polarized	electromagne-c	wave	incident	on	a	free	electron	

Process	by	which	an	electromagne-c	wave	is	sca@ered	in	to	random	direc-ons		
by	a	free	electron.		

Applicable	for			hν<<mec2	

Force	on	the	electron		

Negligible	as	v<<c	



Thomson	sca@ering	
Force	of	a	linearly	polarized	wave	ac-ng	on	a	electron	



Thomson	sca@ering	
Force	of	a	linearly	polarized	wave	ac-ng	on	a	electron	

Dipole	moment	is	defined	by	

Oscilla-ng	dipole	of	amplitude		



Thomson	sca@ering	
Dipole	approxima1on	
Radia-on	from	a	non	rela-vis-c		
system	of	par-cles	(λ>>L)		

Thomson	sca7ering	
Electron	subject	to	electromagne-c	wave	
(hν<<mc2	)	

	(-me	average	of	sin2	ωot	gives	a	factor	½)		

Power	radiated	per	unit	solid	angle	 Power	radiated	per	unit	solid	angle	

Total	Power	radiated		 Total	Power	radiated		

Second	deriva-ve	of	dipole	moment	 Second	deriva-ve	of	dipole	moment	



Thomson	sca@ering	
Electron	subject	to	electromagne-c	wave	

Remember	-me	averaged	poin-ng	flux	is	defined	as			

Define		differen-al	cross	sec-on	dσ	for	sca@ering	in	to	dΩ			



Thomson	sca@ering	

Define		differen-al	cross	sec-on	dσ	for	sca@ering	in	to	dΩ			

Classical	electron		
radius	



Thomson	sca@ering	
Classical	electron	radius	

Measure	of	the	size	of	the	point	charge	
(assuming	the	rest	energy	is	purely	electromagne-c)	
~2.8x10-13	cm	

Total	cross-sec-on	is	obtained	aoer	integra-ng	over	solid	angle,	

=	σT	~0.66	x10-24	cm2	

Thomson	Sca@ering	cross	sec-on	

Frequency	independent,	so	sca@ering	is	equally	effec-ve	at	all	frequencies.	
Valid	for	lower	frequencies	
Not	valid	for	high	frequencies	hν	>mc	2	



Thomson	sca@ering	
Total	cross-sec-on	is	obtained	aoer	integra-ng	over	solid	angle,	

=	σT	~6.65	x10-25	cm2	

Thomson	Sca@ering	cross	sec-on	

Frequency	independent,	so	sca@ering	is	equally	effec-ve	at	all	frequencies.	
	
Valid	for	lower	frequencies	where	hν	<<mc2	
			
Not	valid	for	high	frequencies	when	hν	is	comparable	or	larger	than	mc2	
	

For	very	intense	radia-on	fields	electron	moves	with	rela-vis-c	velocity	
and	dipole	approxima-on	is	not	valid	



Thomson	sca@ering	
Calculated	Thomson	sca@ering	cross-sec-on	for	an	electron	and	Polarized	EM	wave	

Incoming	wave	linearly	polarized	along	ε		

Outgoing	EM	wave	is	also	linearly	polarized	in	the	plane	defined	by	ε	and	n	

Unpolarized	EM	(be@er	randomly	polarized)	wave	can	be	regarded	as		
superposi-on	of	two	linearly	polarized	beams	with	perpendicular	axes	



Unpolarized	EM	wave	can	be	regarded	as	superposi-on	of	two	linearly	polarized		
beams	with	perpendicular	axes	ε1	and	ε2	

Thomson	sca@ering	

angle	between	sca@ered		
and	incident	wave	θ=	π/2-Θ	

Direc-on	of	incident	wave	

Direc-on	of	sca@ered	wave	



Unpolarized	EM	wave	can	be	regarded	as	superposi-on	of	two	linearly	polarized		
beams	with	perpendicular	axes	

Thomson	sca@ering	

Differen-al	cross	sec-on	for	unpolarized		
radia-on	is	the	average	of	the	cross	sec-ons		
of	linear-polarized	radia-on	through	Θ	and	π/2	



Thomson	sca@ering	

ü  Forward-backward	symmetry	:	The	sca@ering	cross	sec-on	is	symmetric		
under	the	reflec-on	θ	à	-θ		
	
ü  Total	cross	sec-on:	The	total	sca@ering	cross-sec-on	of	unpolarized		
incident	radia-on	is	same	as	that	for	polarized	incident	radia-on.	
Since	electron	at	rest	has	no	direc-on	intrinsically	defined.	
	



Thomson	sca@ering	

Polariza-on	intensi-es	in	the	plane	and	perpendicular	are	cos2	θ	:1		

intensi-es	in	two	perpendicular	direc-ons		
in	the	plane	normal	to	n	arising	from	two		
perpendicular	components	of	the	incident	wave	

For	par-ally	polarized	light	degree	of	polariza-on	of	the	sca@ered	wave				



Thomson	sca@ering	
k	direc-on	of	incoming	e.m.	wave		

n	direc-on	of	sca@ered		wave	Total	sca@ering	cross-sec-on	

	Reflec-on	θ	à	-θ	
Sca@ering	cross-sec-on	is	same		
	
ü  Sca@ering	cross	sec-on	for	unpolarized	wave		
=	Sca@ering	cross-sec-on	for	polarized	wave		

ü  Degree	of	polariza-on	of	sca@ered	wave		



Thomson	sca@ering	

Since		Π	>	0	electron	sca@ering	of	a	completely	unpolarized	incident	wave		
produces	sca@ered	wave	with	some	degree	of	polariza-on	intensi-es.	
The	degree	depend	on	θ		



	Example	
Absorp-on	coefficient		

Number	density		
of	par-cles		

Thomson	sca@ering	cross	sec-on	
~6.62x	10-25	cm2	

The	cosmic	microwave	background	is	linearly	polarized	as	a	result	of	Thomson	
sca@ering	(as	measured	by	Degree	angular	scale	interferometer(DASI)	and	
more	recent	experiments).	
	
The	solar	K-corona	is	the	result	of	the	Thomson	sca@ering	of	solar	radia-on	
from	solar	coronal	electrons.	

So	Thompson	sca@ering	is	significant	only	when	number	density	is	high	

α=nσT	



	Example	
Op-cal	depth	

Now	considering	a	nebula	having	n	=10,000	and		
At	a	distance	of	R=1019	cm	
	
Then	we	can	get	es-mate	of		τ=10,000x1019x6.25X10-25=	0.07		

Op-cally	thin	



	Example	

The	cross-sec-on	for	Thomson	sca@ering	is	-ny	and	therefore	Thomson	sca@ering	is	
most	important	when	the	density	of	free	electrons	is	high,	as	in	the	early	Universe	or		
in	the	dense	interiors	of	stars.	



Radia-on	reac-on	

Force	ac-ng	on	a	par-cle	by	virtue	of	the	radia-on	it	produces		
																				
																			Radia-on	reac-on	force	

Let	T	be	the	-me	interval	over	which	kine-c	energy	of	the	par-cle	is	changed	
substan-ally	by	the	emission	of	radia-on	

1/τ	



Radia-on	reac-on	

As	long	as	we	are	considering	processes	that	occur	on	a	-me	scale	much		
longer	than		τ,	we	can	treat	radia-on	reac-on	as	a	perturba-on.		

	τ	~	ro/c		à		-me	for	radia-on	to	cross	a	distance	comparable	to		
																										classical	electron	radius					



Radia-on	reac-on	

Energy	radiated	compensated	by	work	done	against	radia-on	reac-on	force	Frad.		

Abraham–Lorentz	force		



Radia-on	reac-on	

Recoil	force	ac-ng	on	the	charge	
	
Propor-onal	to	the	accelera-on	
	
Valid	for	non	rela-vis-c	cases.	
Dirac	proposed	rela-vis-c	version		

An	accelera-ng	charge	emits	radia-on	according	to	the	Larmor	formula,	
which	carries	momentum	away	from	the	charge.		
	
But	momentum	is	conserved,	so	the	charge	is	pushed	in	the	direc-on	
opposite	the	direc-on	of	the	emi@ed	radia-on:	radia-on	reac-on.		



Review	of	Lorentz	transforma-on	
and	four	vectors	



Review	of	Lorentz	Transforma-ons	

ü  The	laws	of	nature	are	the	same	in	two	frames	of	reference	in	uniform	rela-ve		
mo-on	with	no	rota-on.	
ü  The	speed	of	light	is	c	in	all	such	frames	

Frames	K	and	K’	with	rela-ve	velocity	v	along	x	axis	

A	pulse	of	light	emi@ed	at	t=0	
Each	observer	will	see	an	expanding	sphere	centered	on	its	origin	

Equa-ons	of	
expanding	sphere	



Review	of	Lorentz	Transforma-ons	

Length	contrac-on	

Time	dila-on		



Transforma-ons	of	veloci-es	



Transforma-ons	of	veloci-es	



Transforma-ons	of	veloci-es	

Components	of	u	parallel	
	and	perpendicular	to	v	



Transforma-ons	of	veloci-es	
Beaming	effect	

For	θ’	=	π/2,	considering	a	photon	
	emi@ed	at	right	angles	to	v	in	K’		

For	highly	rela-vis-c	speeds	γ	>>1		

Consider	photons	are	emi@ed	isotropically	in	K’.	
Half	will	have	θ’	>π/2	and	other	half	will	have	θ’	<π/2		
	
In	frame	K	the	photons	are	concentrated	in	forward	direc-on	in	a	cone	of	1/γ.	
This	is	called	beaming	effect.			



Transforma-ons	of	veloci-es	
Beaming	effect	

For	θ’	=	π/2,	considering	a	photon	
	emi@ed	at	right	angles	to	v	in	K’		

For	highly	rela-vis-c	speeds	γ	>>1		

Consider	photons	are	emi@ed	isotropically	in	K’	
In	frame	K	the	photons	are	concentrated	in	forward	direc-on	in	a	cone	of	1/γ.	
This	is	called	beaming	effect.			

Isotropic	emission:	Rest	frame	K’	 Beamed	emission	:K	



Doppler	effect	
Consider	in	rest	frame	of	K		
a	source	emits	one	period	of	radia-on	as	it	moves	from	point	1	to	point	2	

Rest	frame	frequency	of	radia-on	ω’		

Time	dila-on	implies,	-me	taken	to	move	from	
point	1	to	point	2	in	observer’s	frame	

Difference	in	arrival	-me	of	the		
radia-on	emi@ed	at	1	and	2			

Observed	frequency			



Proper	-me	

Space	and	-me	have	different	values	in	different	frames		are	separately		
subject	to	Lorentz	transforma-on	

Some	quan--es	that	are	same	in	all	Lorentz	frames	called	Lorentz	invariants	

Proper	-me	dτ	is	unchanged	under	Lorentz	transforma-on	
Proper	-me	measures	-me	interval	between	events	in	same	spa-al	loca-on	



	Four	vectors	

One	can	find	Lorentz	transforma-on	proper-es	of	other	quan--es	as	well.	
However	four	vectors	have	transforma-on	proper-es	iden-cal	to	co-ordinates		
of	events.	So	the	treatment	is	less	complicated.	

	quan--es	x,y,z,t	an	be	formed	in	to	a	vector	in	four-dimensional	space	

Define	

Space--me	is	a	four-vector:	xµ	=	[ct,	x]	
For	μ=0,1,2,3	



	Four	vectors	

Four	vectors	–Four	components	that	transform	in	a	specific	way		
																									under	Lorentz	transforma-on	
	
Length	of	Four	vectors	is	invariant	i.e.	same	in	every	iner-al	system		

Electromagne-sm	predicts	that	waves	travel	at	c	in	vacuum.	
	
Laws	of	electro	magne-sm	must	be	Lorentz	invariant.	



	Special	rela-vity	in	one	slide	

Space--me	is	a	four-vector:	xµ	=	[ct,	x]	
	
Four-vectors	have	Lorentz	transforma-ons	between	two	frames	
with	uniform	rela-ve	velocity	v:				
	

															x’	=	γ(x	−	βct);																	ct’	=	γ(ct	−	βx)	

xµxν	=	c2t2	−	|x|2	=	c2t’2	−	|x’|2	=	s2	

Lengths	of	four	vectors	are	Lorentz	invariant	



	Charge	and	Current	densi-es	
Under	a	Lorentz	transforma-on	a	sta-c	charge	q	at	rest	becomes	a			
charge	moving	with	velocity	v.	This	is	a	current.	

A	sta-c	charge	density	ρ	at	one	frame	becomes	a	current	density	J	in	other	
	
Note:	Charge	is	conserved	by	a	Lorentz	transforma-on	
	
	
The	charge/current	four-vector	is:					
							
																																																			Jµ	=	ρdxµ/dt	=	[cρ,	J]	
	
The	full	Lorentz	transforma-on	is:		

																													J’x	=	γ(Jx	−	vρ);												ρ’	=	γ(ρ	−	v/c2	Jx)	
	
Note:		γ	factor	can	be	understood	as	a	length	contrac-on	or		-me		dila-on	
affec-ng	the	charge	and	current	densi-es		



	Electrosta-c	&	vector	poten-als	

	
Under	a	Lorentz	transforma-on	a	V	becomes	an	A:	

A	sta-c	charge	density	ρ	is	a	source	of	an	electrosta-c	poten-al	V	
A	current	density	J	is	a	source	of	a	magne-c	vector	poten-al	A	

The	poten-al	four-vector	is	



End	of	Lecture	6	

Next	lecture	:	28th	August	


