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Recap Lecture 5

Maxwell’s equation with source terms
Introduce scalar potential ®(r,t) and vector potential A(r,t)

Expression of O(r,t) and A(r,t) in terms of k and R at retarded time

Expression of Electric field E having two components

Velocity field and Radiation field and when they are important

Total power radiated by non relativistic point charge when it accelerates

Dipole approximation
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Dipole approximation

R,

)

L : scale of the system

Differences in retarded time can be ignored if ﬁ > [
size of the system is small compared to wavelength '




Dipole approximation

ar_ @
dQ  4nc?

sin’ @,

v’ Pattern is symmetric about dipole
moment/acceleration

v Independent of velocity

v’ Intensity of radiation is zero along
the direction of acceleration.

Angular distribution of dipole radiation

Radiation pattern of a half wave dipole antenna



Dipole approximation
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Dipole approximation :
Larmor’s formula extended for a collection of non-relativistic particles
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J.J. Thomson 18
Nobel Prize 190

“In recognition of the great merits of his
theoretical and experimental investigations on
the conduction of electricity by gases."



Thomson scattering

Let us consider application of the dipole formula in a process in which a
free charge radiates in response to an incident electromagnetic wave

Process by which an electromagnetic wave is scattered in to random directions
by a free electron.

Applicable for hv<<mec2



Thomson scattering

Process by which an electromagnetic wave is scattered in to random directions
by a free electron.

Applicable for hv<<mec2

Consider a linearly polarized electromagnetic wave incident on a free electron

Electrich
field

Force on the electron

Negligible as v<<c



Thomson scattering

Force of a linearly polarized wave acting on a electron

F=eeE,sinwyt

i

mr = e€ £,S1n wy!




Thomson scattering

Force of a linearly polarized wave acting on a electron

F=eeEy sinwyt

i

mr = e€ E,S1n wy!.

Dipole moment is defined by d=er,

d=——€sINw,/, sy d=- 5 |esinwyl,
m mwy
illating dipole of amplitud e’E
Oscillating dipole of amplitude  dy= € €

mewy



Thomson scattering

Dipole approximation
Radiation from a non relativistic
system of particles (A>>L)

Second derivative of dipole moment

d= 2 q.r;

Power radiated per unit solid angle

P &
79 = e sin“ O,
Total Power radiated
2d?

P=—
3¢

Thomson scattering
Electron subject to electromagnetic wave
(hv<<mc?)

Second derivative of dipole moment

” e2E0 _
= ———€SIN W/,
m

Power radiated per unit solid angle
dP _ e*E;
dQ  8mmic

(time average of sin’ w,t gives a factor %)

sin‘@®

Total Power radiated

e'E}

P= 3

Imc



Thomson scattering

Electron subject to electromagnetic wave

Remember time averaged pointing flux is defined as <S>__ E

Define differential cross section do for scattering in to dQQ

dP cE§ do
a0 <S>d9 87 df)




Thomson scattering

Define differential cross section do for scattering in to dQ

dP cE$ do
PTY) <S>d9 87 df)
(&
ds)

)polarizcd m 2('4

dP _
ds

4E2
2.3

sin‘@®

8mm-c

e4

Fo=

mc

—>

sin’ @ =r2sin’@®

Classical electron
radius



Thomson scattering

Classical electron radius

82

I'OZ

mc

2

Measure of the size of the point charge
(assuming the rest energy is purely electromagnetic)

~2.8x10 13 em

Total cross-section is obtained after integrating over solid angle,

_ ﬁ _ 2V (1_..2 8 o~ o~ 24~ 2
o—fdeQ—zwrof_l(l pdu.= 873 = 0,~0.66 X102 cm

l

Thomson Scattering cross section

Frequency independent, so scattering is equally effective at all frequencies.
Valid for lower frequencies
Not valid for high frequencies hv >mc ?



Thomson scattering

Total cross-section is obtained after integrating over solid angle,

do l ]
0=f§§d9=27"<2>f_|(1—#2)d#-= 37 =0;76.65x1025 cm?

l

Thomson Scattering cross section

Frequency independent, so scattering is equally effective at all frequencies.
Valid for lower frequencies where hv <<mc?

Not valid for high frequencies when hv is comparable or larger than mc?

For very intense radiation fields electron moves with relativistic velocity
and dipole approximation is not valid



Thomson scattering

Calculated Thomson scattering cross-section for an electron and Polarized EM wave

:

Incoming wave linearly polarized along €

Outgoing EM wave is also linearly polarized in the plane defined by € and N

Unpolarized EM (better randomly polarized) wave can be regarded as
superposition of two linearly polarized beams with perpendicular axes




Thomson scattering

Unpolarized EM wave can be regarded as superposition of two linearly polarized

beams with perpendicular axes €; and g,

©

Direction of scattered wave
n

angle between scattered
and incident wave 6=1/2-0

K
Direction of incident wave



Thomson scattering

Unpolarized EM wave can be regarded as superposition of two linearly polarized
beams with perpendicular axes

Differential cross section for unpolarized
radiation is the average of the cross sections
of linear-polarized radiation through © and /2

S

— K

(8 )= (G0 )t (7))

=2 ro(1+sin’ @)

=2ro(1+cos?8)



Thomson scattering

(8 )31 (G0 )t (7).

v" Forward-backward symmetry : The scattering cross section is symmetric
under the reflection 6 > -6

v Total cross section: The total scattering cross-section of unpolarized
incident radiation is same as that for polarized incident radiation.
Since electron at rest has no direction intrinsically defined.

6 unpol = Tpor = (87/3)1rg



Thomson scattering

(8 o3| () (7).

| |
!

intensities in two perpendicular directions
in the plane normal to n arising from two
perpendicular components of the incident wave

N |-

Polarization intensities in the plane and perpendicular are cos?6 :1

For partially polarized light degree of polarization of the scattered wave

[1= Inax — I min M= | —cos’8
Inax + I min 1 +cos*8




Thomson scattering

k direction of incoming e.m. wave
Total scattering cross-section

N direction of scattered wave
(gg) _ [(do(@))) +(do(7r/2))
dQ unpol dQ pol dQ pol

N | -

=%r§(l +sin’ Q)
g
=3 r3(1+cos’8), )

Reflection 8 - -6

. o =q/2—0
Scattering cross-section is same

v’ Scattering cross section for unpolarized wave
= Scattering cross-section for polarized wave €2

ounpol = opol = (877/3)"3

_ 1—cos*8

v' Degree of polarization of scattered wave I1= P
1 +cos“@




Thomson scattering

M= l-—-cosi&
1 +cos“@

Since 1> 0 electron scattering of a completely unpolarized incident wave
produces scattered wave with some degree of polarization intensities.
The degree depend on 6



Example

Absorption coefficient

a=N0;

l

Number density
of particles v

Thomson scattering cross section
~6.62x 102> cm?

So Thompson scattering is significant only when number density is high

The cosmic microwave background is linearly polarized as a result of Thomson
scattering (as measured by Degree angular scale interferometer(DASI) and
more recent experiments).

The solar K-corona is the result of the Thomson scattering of solar radiation
from solar coronal electrons.



Example

Optical depth

7,(s)= f a,(s')ds’

T=no;R

Now considering a nebula having n =10,000 and
At a distance of R=101°cm

Then we can get estimate of T=10,000x101°x6.25X10-2>= 0.07

.

Optically thin



Example

The cross-section for Thomson scattering is tiny and therefore Thomson scattering is
most important when the density of free electrons is high, as in the early Universe or
in the dense interiors of stars.



Radiation reaction

Force acting on a particle by virtue of the radiation it produces

=== Radiation reaction force

Let T be the time interval over which kinetic energy of the particle is changed
substantially by the emission of radiation

mo? v\2
T~ —_ el
P, ( a )
2e? _
T l T= 3 ~10"%%
2q2,32 3mc

= 3¢? 1/t



Radiation reaction

2
T= Ze ~10"%%

Ime?

T~ ro/c —> time for radiation to cross a distance comparable to
classical electron radius

As long as we are considering processes that occur on a time scale much
longer than T, we can treat radiation reaction as a perturbation.



Radiation reaction

Energy radiated compensated by work done against radiation reaction force F,_.

Abraham—Lorentz force



Radiation reaction

Recoil force acting on the charge
Proportional to the acceleration

Valid for non relativistic cases.
Dirac proposed relativistic version

An accelerating charge emits radiation according to the Larmor formula,
which carries momentum away from the charge.

But momentum is conserved, so the charge is pushed in the direction
opposite the direction of the emitted radiation: radiation reaction.



Review of Lorentz transformation
and four vectors



Review of Lorentz Transformations

v" The laws of nature are the same in two frames of reference in uniform relative
motion with no rotation.
v" The speed of light is c in all such frames

y
y Frames K and K’ with relative velocity v along x axis

?—y v A pulse of light emitted at t=0
Each observer will see an expanding sphere centered on its origin

0’ x’ Equations of
0 expanding sphere

. / X2+ yi+ 22— =0, x?+y?+ 27— ci*=0,



Review of Lorentz Transformations

Length contraction

' % 2\1/2
’—Y(’“*zx) L=(l-——b—) L,

C2

X
Time dilation

T=t,—1,=y(t;—-1))=vT,



YA

Transformations of velocities

'

¥ A
—

K K’

1’
u'
ol

. / }

dx=vy(dx'+vdt’), dy=ady’

dz=dz', dt = y(dt’ + % dx’)
c



Transformations of velocities

yT YA

\
Y

y(dx'+vdt’) = u+v
y(dt' +vdx'/c?) 1+ou/c?

=
dt

X

u’ .
y u,

w= , =
Y(1+0u;/c?) “ y(1+vul/c?)



Transformations of velocities

YA YA
—
K K
.
/ '
> X 3 X
u,+ v '
" I ’ L= Wi Components of u parallel
I (1 + DuI"/CJ) y(l + vu|’|/¢~2) and perpendicular to v
tan g = sing’
. y(cos8’'+v/c)
U, u'sind :
tan0=——.—. cost’'+v/c

u, y(u'cosd’+v) Cost = T o/ ) cosd



Transformations of velocities
Beaming effect

C
tanf = —
For 8’ = /2, considering a photon —) YU
emitted at right angles tov in K’ 1
sinfl = —.
Y

For highly relativistic speeds y >>1 —— f~ —
y

Consider photons are emitted isotropically in K.
Half will have 8’ >Tt/2 and other half will have 6’ <1t/2

In frame K the photons are concentrated in forward direction in a cone of 1/y.
This is called beaming effect.



Transformations of velocities
Beaming effect

C
tanf = —
For 8’ = /2, considering a photon =) YU
emitted at right angles tov in K’ 1
sinfl = — .
Y
1
For highly relativistic speeds y >>1 —— g~ —
y

Consider photons are emitted isotropically in K’
In frame K the photons are concentrated in forward direction in a cone of 1/y.
This is called beaming effect.

]

Isotropic emission: Rest frame K’ Beamed emission :K




Doppler effect

Consider in rest frame of K
a source emits one period of radiation as it moves from point 1 to point 2

Rest frame frequency of radiation w’ Observer

Time dilation implies, time taken to move from N
point 1 to point 2 in observer’s frame

A,=2_”7 =pAt and d=vArcosé.

’

W
Difference in arrival time of the
radiation emitted at 1 and 2

At,=At— % =A:(1 -~ %cos&)

Observed frequency

W= = - === Relativistic Doppler effect
L4 y( 1— ——cosO)



Proper time

Space and time have different values in different frames are separately
subject to Lorentz transformation

Some quantities that are same in all Lorentz frames called Lorentz invariants

cldr?=c?d* — (dx*+ dy*+ dz?)

Proper time dt is unchanged under Lorentz transformation
Proper time measures time interval between events in same spatial location



Four vectors

One can find Lorentz transformation properties of other quantities as well.

However four vectors have transformation properties identical to co-ordinates
of events. So the treatment is less complicated.

cldrt=c?dr* — (dx*+ dy*+ dz?)

i

guantities x,y,z,t an be formed in to a vector in four-dimensional space
Define x0= ct

x'=x
Space-time is a four-vector: XH = [Ct, X]
x?=y Foru=0123

x =7z.



Four vectors

Four vectors —Four components that transform in a specific way
under Lorentz transformation

Length of Four vectors is invariant i.e. same in every inertial system

Electromagnetism predicts that waves travel at ¢ in vacuum.

Laws of electro magnetism must be Lorentz invariant.



Special relativity in one slide

Space-time is a four-vector: X* = [ct, X]

Four-vectors have Lorentz transformations between two frames
with uniform relative velocity v:

X' =y(x - Bct); ct’ = y(ct - Bx)

B=v/cand vy=1/4/1— [3?

Lengths of four vectors are Lorentz invariant

XHXY = c?t? - |x|?=ct’? - |X'|? =5



Charge and Current densities

Under a Lorentz transformation a static charge q at rest becomes a
charge moving with velocity v. This is a current.

A static charge density p at one frame becomes a current density J in other

Note: Charge is conserved by a Lorentz transformation

The charge/current four-vector is:
JH = pdx*/dt = [cp, J]

The full Lorentz transformation is:

V' =vU, - vp); p'=v(p-v/c*l)

Note: y factor can be understood as a length contraction or time dilation
affecting the charge and current densities



Electrostatic & vector potentials

A static charge density p is a source of an electrostatic potential V
A current density J is a source of a magnetic vector potential A

1 J
V= /BdT A=ﬂ/ Zdr
47!'60 v T 47 v T

Under a Lorentz transformation a V becomes an A:

Al = ~(A, — :—2V) V' =4(V —vA,)

The potential four-vector is [ V }



End of Lecture 6

Next lecture : 28t August



