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Recap	Lecture	4	
	

Maxwell’s	equa-ons	

Maxwell’s	equa-ons	in	vacuum	

Wave	equa-on	with	E	

Solu-on	of	wave	equa-on	with	E	



Recap	Lecture	4	
	

Maxwell’s	equa-ons	

Maxwell’s	equa-ons	in	vacuum	

Wave	equa-on	with	E	

Solu-on	of	wave	equa-on	with	E	and	B	



Maxwell’s	Equa-ons	(Recap)	
(in	Gaussian	units)	



Electromagne-c	Poten-als	
E	and	B	are	replaced	by	Φ(r,t)	and	A(r,t)		

Why	we	need	EM	poten-als?	
1)	One	scalar	plus	one	vector	simpler	than	two	vectors	

2)	Determining	A	and	Φ	are	simpler	

3)	Rela-vis-c	EM	theory	will	be	simpler	
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Vector	poten-al	A(r,t)	defined	as		

Maxwell’s	equa-on		



Electromagne-c	Poten-als	
E	and	B	are	replaced	by	Φ(r,t)	and	A(r,t)		

Why	we	need	EM	poten-als?	

1)	One	scalar	plus	one	vector	simpler	than	two	vectors	

2)	Determining	A	and	Φ	are	simpler	

3)	Rela-vis-c	EM	theory	will	be	simpler	

		Vector	poten-al	A(r,t)	defined	as		

Thus		

Scalar		poten-al	Φ(r,t)	defined	as		

Maxwell’s	equa-on		



Electromagne-c	Poten-als	
E	and	B	are	replaced	by	Φ(r,t)	and	A(r,t)		

		
Remember		



Electromagne-c	Poten-als	
Thus	from	Maxwell’s	equa-ons,		



Electromagne-c	Poten-als	

Thus	from	Maxwell’s	equa-ons,		



Electromagne-c	Poten-als	

Thus	from	Maxwell’s	equa-ons,		



Electromagne-c	Poten-als	
Scalar	and	vector	poten-al	are	not	uniquely	determined	by	the	condi-ons		
	

For	example,	the	addi-on	of	gradient	ψ	to	A	will	not	change	B		
	

Electric	field	will	not	change	if	φ	is	changed	in	following	manner		
	

Such	altera-ons	of	A	and	ϕ	are	called	Gauge	transforma-on		
	

Lorentz	Gauge	



Electromagne-c	Poten-als	
Thus	from	Maxwell’s	equa-ons,		

Thus	from	Maxwell’s	equa-ons,		



Retarded	Poten-als	

																									Informa-on	at	point	r’	propagates	at	speed	of	light.	
	
	
The	poten-al	at	r	can	only	be	affected	by	condi-ons	at	r’	at	a	retarded	-me	t-	|r-r’|/c	

r	

r’	
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Retarded	Poten-als	

ü  Retarded	-me	refers	to	condi-ons	at	the	point	r’	that	existed	at		
a	-me	earlier	than	t	by	-me	required	for	light	to	travel	between	r	and	r’		

ü  Informa-on	from	point	r’	propagates	at	speed	of	light,	so	
Poten-al	at	r	can	be	affected		by	condi-ons	of	r’	at	this	retarded	-me		

ü  Solu-ons	with	advanced	-me	are	not	permi?ed	physically.	

For	given	charge	and	current	density	first	find	the	retarded	poten-als	and		
then	determine	E	and	B		



Retarded	poten-al	of	single	moving	charges	:	
Lienard-Wiechart	poten-als	

Par-cle	of	charge	q	moving	along	a	trajectory	r=r0(t),	velocity	u(t)=r0(t)	

Charge	and	current	density	

Total	Charge		 Total	Current		



Retarded	poten-al	of	single	moving	charges	:	
Lienard-Wiechart	poten-als	

Charge	and	current	density	

Scalar	Poten-al		

		

Par-cle	of	charge	q	moving	along	a	trajectory	r=r0(t),	velocity	u(t)=r0(t)	



Retarded	poten-al	of	single	moving	charges	:	
Lienard-Wiechart	poten-als	

Charge	and	current	density	

Scalar	Poten-al		

Par-cle	of	charge	q	moving	along	a	trajectory	r=r0(t),	velocity	u(t)=r0(t)	



Retarded	poten-al	of	single	moving	charges	:	
Lienard-Wiechart	poten-als	

δ	func-on	vanishes	for		
A	value	of	t’=tret	given	by,		



Retarded	poten-al	of	single	moving	charges	:	
Lienard-Wiechart	poten-als	

δ	func-on	vanishes	for		
A	value	of	t’=tret	given	by,		



Retarded	poten-al	of	single	moving	
charges	:	Lienard-Wiechart	poten-als	
Change	the	variable	from	t’	à	t”	



Retarded	poten-al	of	single	moving	charges	:	
Lienard-Wiechart	poten-als	

Change	the	variable	from	t’	à	t”	

Lienard-Wiechart	Poten-al	



Retarded	poten-al	of	single	moving	
charges	:	Lienard-Wiechart	poten-als	

Differ	from	sta-c	electromagne-c	theory	in	two	ways		

1)  Extra	factor	κ	:	Important	for	veloci-es	close	to	light.		
								Tends	to	concentrate/beam	poten-al	into	a	narrow	cone	about	par-cle	velocity.	
								Beaming	effect	(will	be	detailed	in	coming	lectures)		

2)  Quan--es	are	evaluated	at	retarded	-me.			

Differen-ate	the	poten-als	to	get	electric	field(E)	and	magne-c	field(B)	
(Jackson	Sec-on	14)	



Velocity	and	Radia-on	field	

Fig	:	Radia-on	field	at	R	from	posi-on	of	the	radia-ng	par-cle	at	the	retarded	-me	
			

Velocity	field	 Accelera-on/Radia-on	field	



Radia-on	field	

Velocity	field	
§  1/R2	dependence	
§  Only	contribu-ng	term	for		
par-cle	with	constant	velocity	
§  Generaliza-on	of	the	Coulomb’s		
law	to	moving	par-cles	approaches		
to	coulomb’s	law	when	u<<c	

Accelera-on	field/Radia-on	field	
1/R	dependence	
Propor-onal	to	par-cle’s	accelera-on	
perpendicular	to	n	

§  Electric	filed	always	point	towards		
current	posi-on	of	the	par-cle	



Radia-on	field	

Radia-on	field	

Erad,	Brad,	n	:	mutually	perpendicular	
	|Erad|	=	|Brad|	



Radia-on	fields	
Consider	a	par-cle	originally	moving	at	constant	velocity	along	x	axis	is	stopped		
at	x=0	and	t=0	
	
At	t=1	the	field	outside	of	a	radius	c	is	radial	and	points	to	the	posi-on	where		
par-cle	would	have	been	if		there	was	no	decelera-on	(since	no	informa-on	
Is	yet	propagated	to	that	distance)			
	
But	field	inside	the	radius	c	is	informed.	
	



Radia-on	fields	

These	two	fields	can	be	connected	with	flux	conserva-on:	as	shown	in	the	figure.	
	
Transi-on	zone	whose	radial	thickness	is	the	-me	interval	over	which	decelera-on	occurs.	
This	transi-on	zone	is	almost	transverse	and	much	stronger.		
	
Radius	of	the	ring	varies	as	R,	strength	of	the	field	varies	as	1/R	



Radia-on	Spectrum	
Energy	per	unit	frequency	per	unit	solid	angle	corresponding	to	the	radia-on	
field	of	a	single	par-cle	

Evaluated	at	a	retarded	-me		

(Slide	24	of	Lecture	4)	



Radia-on	Spectrum	
Energy	per	unit	frequency	per	unit	solid	angle	corresponding	to	the	radia-on	
field	of	a	single	par-cle	

Evaluated	at	a	retarded	-me		

Changing	variable	from	t	to	t’			



Radia-on	fields	
Energy	per	unit	frequency	per	unit	solid	angle	corresponding	to		
the	radia-on	field	of	a	single	par-cle	

Integra-on	by	parts	



Radia-on	from	non-rela-vis-c	systems	of	
par-cles	

Knowing	the	velocity	and	radia-on	fields	we	will	be	able	to	discuss	many		
radia-on	processes	involving	moving	charges		

Electric	filed	of	moving	charges	(Refer	to	Slide	26)	

For	the	moment	we	will	consider	discussion	of	non	rela-vis-c	par-cles	

Evel	 E	rad	



Radia-on	from	non-rela-vis-c	systems	of	
par-cles	

Considering		

For	par-cle	with	frequency	of	oscilla-on	ν		

R	<	λ				 “Near	zone”			

R	>>		λ(c/u)					

Velocity	field	stronger	than		
Radia-on	field	by	>	c/u			

“Far	zone”			 Accelera-on	field	dominates	
Domina-on	increase	linearly	with	R	

Refer	to	Slide	26	



Larmor’s	Formula	
Total	power	radiated	by	a	non-rela-vis-c	point	charge	as	it	accelerates		

For	β<<1		

Outward	flow	of	energy	along	n		



Larmor’s	Formula	
Total	power	radiated	by	a	non-rela-vis-c	point	charge	as	it	accelerates		

For	β<<1		

Poyn-ng	Vector		

Outward	flow	of	energy	along	n		



Larmor’s	Formula	

Larmor’s	Formula	for	emission		
from	a	single	accelerated	charge	q	

Power	radiated	per	unit	solid	angle	per	unit	-me			



Larmor’s	Formula	

ü  Power	emi?ed	is	propor-onal	to	square	of	charge	and	square	of	accelera-on				

ü  Dependence	on	sin2	Θ		:	No	radia-on	along	direc-on	of	accelera-on	
																																																		Max	radia-on	perpendicular	to	accelera-on				

ü  Direc-on	of	Erad	is	determined	by	ů	and	n	:	If		the	par-cle	accelerates	along	a		
						line	radia-on	will	be	100%	polarized	in	the	plane	of	ů		and	n	



ü  Larmor	Formula	states	that	any	charged	par-cle	radiates	when	accelerated	and	
that	the	total	radiated	power	is	propor-onal	to	the	square	of	the	accelera-on.	

ü  Radia-on	are	only	emi?ed	when	par-cle	are	accelerated.		
	
ü  Since	the	astrophysical	accelera-ons	are	usually	electromagne-c,	the	accelera-on	

is	usually	propor-onal	to	the	charge/mass	ra-o	of	the	par-cle.		
	
ü  Radia-on	from	electrons	is	typically	~106	stronger	than	radia-on	from	protons,	

which	are	~103	-mes	more	massive.	
	

Larmor’s	Formula	

Larmor's	equa-on	will	be	applied	in	many	contexts	
e.g.	dipole	approxima-on	as	well	as	for	free-free		
								synchrotron	emission	from	astrophysical	sources	



Larmor’s	Formula	

Limita-ons:	
ü  Larmor's	formula	is	nonrela-vis-c;	it	is	valid	only	in	frames	moving	at	

veloci-es	v<<c	with	respect	to	the	radia-ng	par-cle.		
	
ü  To	treat	par-cles	moving	at	nearly	the	speed	of	light	in	the	observer's	frame,	

we	must	use	Larmor's	equa-on	to	calculate	the	radia-on	in	the	par-cle's	
rest	frame	and	then	transform	the	result	to	the	observer's	frame	in	a	
rela-vis-cally	correct	way.			

	
ü  Larmor's	formula	does	not	incorporate	the	constraints	of	quantum	

mechanics,	so	it	should	be	applied	with	great	cau-on	to	microscopic	systems	
such	as	atoms.		For	example,	Larmor's	equa-on	incorrectly	predicts	that	the	
electron	in	a	hydrogen	atom	will	quickly	radiate	away	all	of	its	kine-c	energy	
and	fall	into	the	nucleus.	



Dipole	approxima-on		

When	there	are	many	par-cles	with	posi-on	ri,	veloci-es	ui,	charges	qi		
Radia-on	field	at	large	distance	~	summa-on	of	Erad	for	each	par-cle	

But		Erad	for	each	par-cle	is	true	for	different	retarded	-mes	

Collec-on	of	charged	par-cles	

How	to	derive	radia-on	field?	



Dipole	approxima-on		

v	
v	

v	 v	
v	

v	

L	:	scale	of	the	system	

τ	:	-me	scale	for	changes	

Differences	in	retarded	-me	across	source	is	negligible		

ν	:	characteris-c	frequency	of	Erad=1/τ	

Differences	in	retarded	-me	can	be	ignored	if		
size	of	the	system	is	small	compared	to	wavelength		



Dipole	approxima-on		

Dipole	approxima-on	:		
Larmor’s	formula	extended	for	a	collec-on	of	non-rela-vis-c	par-cles				



Dipole	approxima-on	
Spectrum	of	radia-on		

Assuming	d	lies	in	single	direc-on	

Fourier	transform	of	d(t)	

Electric	field	in	frequency	domain	



Dipole	approxima-on	
Spectrum	of	radia-on		

Assuming	d	lies	in	single	direc-on	

Spectrum	of	radia-on	

Energy	per	unit	solid	angle	per	frequency	range,	(dA=	R02	dΩ)	

From	Lecture	4,	energy	per	unit	area	

Electric	field	in	-me	domain	

Electric	field	in	frequency	domain	



Dipole	approxima-on	
Spectrum	of	radia-on		

Spectrum	of	radia-on	

Rayleigh	sca?ering	formula	
propor-onal	to		1/λ	4	
(Reason	for	blue	color	of	the	sky)	



Dipole	approxima-on	
Spectrum	of	radia-on		

Spectrum	of	the	emi?ed	radia-on	is	related	to	frequency	of	oscilla-on		
of	the	dipole	moments.	
	
This	property	is	not	true	for	par-cles	with	rela-vis-c	veloci-es.	



General	mul-pole	expansion	
		

Vector	Poten-al	

But	Fourier	transform	of	A(r,t)	and	jω	are	following	

Thus	Vector	Poten-al	



General	mul-pole	expansion	
		

Let	us	choose	origin	of	the	co-ordinates	inside	source	of	size	L	

Then	for	field	s	r>>L,	we	have	

n	points	towards	the	field	point	r		and	where	r=|r|	

Effect	of	retarda-on	from		
the	source	as	a	whole	

Rela-ve	retarda-on	of	
each	element	of	the	source		



General	mul-pole	expansion	
		

Expanding	the	exponen-al	in	the	integral	considering	kL<<1,		

Dipole	approxima-on	results	from	taking	only	the	first	term	of	the	expansion	(n=0)		

Quadrupole	term	is	the	term	with	n=1			



End	of	Lecture	5	

Next	lecture	:	23rd	August	

Mini-test	on	lectures		1-6	
(prac-ce	problems	from	Rybicki	and	Lightman	Chapter	1,	2,	3)		
:	28rd	August	


