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Recap Lecture 4

Maxwell’s equations
Maxwell’s equations in vacuum

Wave equation with E

Solution of wave equation with E



Recap Lecture 4

Maxwell’s equations

Maxwell’s equations in vacuum

2
Wave equation with E V2E — | 0°E =0
c? ar?
Solution of wave equation with E and B EF = ﬁl E, pl(kT—wl)
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Maxwell’s Equations (Recap)
(in Gaussian units)

V-D=47rp V-B=0
V)(E=—l—é-)-E VxH:i”_j.f.la_D
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Electromagnetic Potentials
E and B are replaced by O(r,t) and A(r,t)

Why we need EM potentials?

1) One scalar plus one vector simpler than two vectors

2) Determining A and @ are simpler

3) Relativistic EM theory will be simpler




Electromagnetic Potentials

E and B are replaced by O(r,t) and A(r,t)
Why we need EM potentials?

1) One scalar plus one vector simpler than two vectors
2) Determining A and @ are simpler

3) Relativistic EM theory will be simpler

Maxwell’s equation V*B=0

Vector potential A(r,t) definedas B=V xA.
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Electromagnetic Potentials

E and B are replaced by ©O(r,t) and A(r,t)
Why we need EM potentials?

1) One scalar plus one vector simpler than two vectors

2) Determining A and @ are simpler

3) Relativistic EM theory will be simpler

Maxwell’s equation V*B=0
Vector potential A(r,t) definedas B=V xA.

Thus
1 dB 1 dA
VXE=——— o Vx(E+—-—)=0‘
¢ ot ¢ of
Scalar potential @(r,t) defined as E+ l -a—é- =—Vo¢



Electromagnetic Potentials
E and B are replaced by ©O(r,t) and A(r,t)

B+ =7
1 dA
E=—Vo %

Remember

V-D=47np
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Vo + - at(V A) 47p



Electromagnetic Potentials

Thus from Maxwell’s equations,

1 d
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Electromagnetic Potentials

C c Ot

Thus from Maxwell’s equations,

VX(VXA)“'?E

l 8(_v IBA) 4

i VX(VXxA)=—-V:A+V(V-A)



Electromagnetic Potentials

C ¢ Ot

Thus from Maxwell’s equations,

1 d .
VX(VXA -?E(—V(b-——)———j

i VX(VxA)=—-V:A+V(V-A)
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Electromagnetic Potentials

Scalar and vector potential are not uniquely determined by the conditions

For example, the addition of gradient Y to A will not change B

A—->A+Vy, B—-B.

Electric field will not change if ¢ is changed in following manner

o — i Q‘_{/_ . E-E.




Electromagnetic Potentials

Thus from Maxwell’s equations,

1 0
Vo + Y (V-A) 47p

1 3% 1 9 1 3¢
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Vo 2 52 +C at(—V—ﬁC at) 47p
Thus from Maxwell’s equations,
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Retarded Potentials
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Information at point r’ propagates at speed of light.

i

The potential at r can only be affected by conditions at r’ at a retarded time t- |r-r’|/c



Retarded Potentials
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Information at point r’ propagates at speed of light.

i

The potential at r can only be affected by conditions at r’ at a retarded time t- |r-r’|/c



Retarded Potentials

r

[0]=0(r.1—7Ir—r)

rl

1 3% (o ]d3r’
Vi — = —47p, c—

l 82A 47 ild>r

& ar c) A= [ r—7)]

o(r,t)= fd’ ’fdz’ p(r, 6(t'—t+|r—r’|/c).

Ir— l’I

Information at point r’ propagates at speed of light.

i

The potential at r can only be affected by conditions at r’ at a retarded time t- |r-r’|/c



Retarded Potentials

v' Retarded time refers to conditions at the point r’ that existed at
a time earlier than t by time required for light to travel between r and r’

v" Information from point r’ propagates at speed of light, so
Potential at r can be affected by conditions of r’ at this retarded time

v" Solutions with advanced time are not permitted physically.

For given charge and current density first find the retarded potentials and
then determine E and B



Retarded potential of single moving charges :
Lienard-Wiechart potentials

Particle of charge g moving along a trajectory r=r(t), velocity u(t)=.r0(t)

Charge and current density p(r, I) = q8(l’ - l‘o(t)).
i(r.1)=qu(2)8(r—ro(1))

q=f0(l',1)d3l‘. qu=fj(r,t)d3r.

| |

Total Charge Total Current



Retarded potential of single moving charges :
Lienard-Wiechart potentials

Particle of charge g moving along a trajectory r=r(t), velocity u(t)=r(t)

Charge and current density p(l‘, 1) = 48(r - ro(t))'

i(r,2) = qu(2)8(r —re(1))

d”

o(r,1) = f[

1

—> Scalar Potential

[0]=0(r.i- —C-lr—r'l)

o(r, 1) = f d’r f ar 21 8(t' —t+|r—r]/c).

r—r|



Retarded potential of single moving charges :
Lienard-Wiechart potentials

Particle of charge g moving along a trajectory r=r,(t), velocity u(t)=r.0(t)
Charge and current density P(l', 1) = q8(r - l'o(f))-
j(r,1)=qu(2)8(r—ry(1))

dJ’
l f[ Scalar Potential
PR r.t —> Scalar Potentia
Q(r,t Clr rl) o( ) r—r]

I

2]

¢(r,t)=fd3r’fdt’ pLr, ! ,) 8(t'—t+|r—rl/c).

r—r|

| a=Jornd’

o(r,0)=q [ 8(r' = 1+|r—ro(1)|/c)

Ir— "o(’ )]



Retarded potential of single moving charges :
Lienard-Wiechart potentials

o(r,1)= qf8(t —t+|r—r,(1')|/c) Ir— ro(t )|
i R(7')=r—ry(r).

o(r,1) =g [ R N2)8(t — 1+ R(2))/c)dt’

Rir, t)

Particle position
at¢
O function vanishes for

Path of A value of t'=t, given by,
particle

g C(t-trct)=R([rct)'

ret

Particle position
atr .




Retarded potential of single moving charges :
Lienard-Wiechart potentials

o(r,1) =g f R N2)8(t — 1+ R(2))/c)dt’

A(r,t)= %fu(r’)R “We)s(r'—t+ R(1')/c)dr

Rir, t)

Particle position
at¢
O function vanishes for

Path of A value of t'=t,, given by,
particle

B C(I-Irct)=R(tret)'

ret

Particle position
atr .




Retarded potential of single moving
charges : Lienard-Wiechart potentials

Change the variable from t’ > t” |
"=1—1+[R()/c) ===  di"=di’+—R(r)dl

R_?( )= R_"(t’)
2R(I)R(1')y= —2R(?")~u(?t"),

R
R

a”=|1- %n(t’)-u(t’)}dt’,

(1) =1— %n(t’)-u(t’)



Retarded potential of single moving charges :
Lienard-Wiechart potentials

Change the variable fromt’ 2> t” .
"=t —t+[R(t)/c] === dt"=di'+—R(t)dl

i
di” = [ |- %n(t’)-u(t’)Jdt’,
o(r,?)= qu “'(t’){ | — —:?n(t')°u(t’)] _18(1”)dt"

K(tret)qR(trcl) K(t’) =1- %n(f')ou([')

o(r,7)=

u
Lienard-Wiechart Potential o= [ ;qﬁ ] A= [ ;?(_R J




1)

2)

Retarded potential of single moving
charges : Lienard-Wiechart potentials

(][]

Differ from static electromagnetic theory in two ways

Extra factor k . Important for velocities close to light.
Tends to concentrate/beam potential into a narrow cone about particle velocity.

Beaming effect (will be detailed in coming lectures)

Quantities are evaluated at retarded time.

Differentiate the potentials to get electric field(E) and magnetic field(B)
(Jackson Section 14)



Velocity and Radiation field

ate,,,

Particle position

Rir, 1)

Particle position

at¢
u
Path of ﬂE -
particle C
k=|—n-*g

Fig : Radiation field at R from position of the radiating particle at the retarded time

ﬁ[ Rx{(n B)Xﬁ}} B(r,1) =[n X E(r,7)]

(n—B)(1- B2
E(r,t1)=g¢ { ETE
|
Velocity field Acceleration/Radiation field



Radiation field

E(r,)=¢ ‘“"Q“’ ) 3{—“; (n B)

[ «3R?2
Velocity field Acceleration field/Radiation field
= 1/R?dependence 1/R dependence
= Only contributing term for Proportional to particle’s acceleration
particle with constant velocity perpendicular to n

»  Generalization of the Coulomb’s
law to moving particles approaches
to coulomb’s law when u<<c

= Electric filed always point towards
current position of the particle




Radiation field

E(r,1)=q{ b + 2 x{(a-B)xh) |
Radiation field .
v E,ad(r,t)=%[:;§x{(n-—B)xB}].

Brad(r’t)z [anrad]‘

Erad, Brad, n : mutually perpendicular

[Eradl = 1Bragl



Radiation fields

Consider a particle originally moving at constant velocity along x axis is stopped
at x=0 and t=0

At t=1 the field outside of a radius c is radial and points to the position where
particle would have been if there was no deceleration (since no information

Is yet propagated to that distance)

But field inside the radius c is informed.




Radiation fields

~

L

x=0 x =1

These two fields can be connected with flux conservation: as shown in the figure.

Transition zone whose radial thickness is the time interval over which deceleration occurs.
This transition zone is almost transverse and much stronger.

Radius of the ring varies as R, strength of the field varies as 1/R



Radiation Spectrum

Energy per unit frequency per unit solid angle corresponding to the radiation
field of a single particle

dw ¢ e 2
20d% = 3| ) [RE(D) ]evar

2 2

f[n)({(n—B)XB}x"]e"“’dt

l

Evaluated at a retarded time

(Slide 24 of Lecture 4)

4n2c




Radiation Spectrum

Energy per unit frequency per unit solid angle corresponding to the radiation
field of a single particle

dw ¢ et 2
70d = 31| ) [ RE(D)]ed

2 2

f[nx{(n—B)xB}x‘3]e‘“’dt

4n2c

Evaluated at a retarded time

Changing variable fromtto t’ r=1- R(’ )/C R(’ )z|r| —ner
dt=kdt

2

aw 9 fnx{(n—B)XB}K_ZCXP[iw(""“'ro(")/")]d" |

dwdQ  4nic




Radiation fields

Energy per unit frequency per unit solid angle corresponding to
the radiation field of a single particle

dw : | :

dwdQ 4:% fnx {((n=B)xB}x~*exp[iw(t —mery(r')/c)]dr’|.
Integration by parts

2

dijﬂ =(g"w?/4n%) f“x(an) CXP[iw(t’--nd‘o(t')/C)]dt’ .




Radiation from non-relativistic systems of
particles

Electric filed of moving charges (Refer to Slide 26)

[ (m=pB)(1-87)

_ CANLE _Byxg) |
E(r,t)—q[ SR +C[K,R><{(n B)Xﬂ}J
l !
Evel Erad

Knowing the velocity and radiation fields we will be able to discuss many
radiation processes involving moving charges

For the moment we will consider discussion of non relativistic particles

Erad Rﬁ
E_.~— 2

vel C




Radiation from non-relativistic systems of
particles

Refer to Slide 26

E(m)=q{ (-p(1-F) }d[;;‘? x {(n—B)x £} ]

k°’R? ¢ J
Considering . u E .a Ru
|B|=—<I 3
¢ vel C
E uy R
For particle with frequency of oscillation v rad 5? vz
vel C C A

R<A ﬁ “Near zone” ﬁ Velocity field stronger than

Radiation field by > c/u

R>> A(c/u) Emmmmp  “Farzone” mmmm) Acceleration field dominates
Domination increase linearly with R



Larmor’s Formula

Total power radiated by a non-relativistic point charge as it accelerates

E.qr)= —‘i[;;'—é x{(n—B)xB} |

C

For B<<1 i

=[(g/Rc*)nx (nxu)]

Erad
Bmd= [DXErad]'

Outward flow of energy along n



Larmor’s Formula

Total power radiated by a non-relativistic point charge as it accelerates

Erad(r’t)= i[:?? X {(n“'B)XB} '

C
For B<<1 i

E. = [(q/Rcz)nx(nXt'l)]
Brad= [nXErad]'

IErad‘ o |Brad‘ - E sin®

Poynting Vector
c gt .,
S= 477 —E2,= 47 R4 sin“© Outward flow of energy along n



Larmor’s Formula

¢ g2 _ € 4% sin’®
477 rad 477 R2C4

Power radiated per unit solid angle per unit time

aw g%t ., _dw _ ¢qt .,
71d0 P sin”©. > P= a4 fsm 4
P 2q7122
3¢°

'

Larmor’s Formula for emission
from a single accelerated charge g



Larmor’s Formula

_dW _ qHt .,
P= 7 4m‘sfsm 04
.2
P 2q2u
3¢

v' Power emitted is proportional to square of charge and square of acceleration

v" Dependence on sinZ® : No radiation along direction of acceleration
Max radiation perpendicular to acceleration

v’ Direction of E_, is determined by U and n : If the particle accelerates along a
line radiation will be 100% polarized in the plane of 4 and n



Larmor’s Formula

_ 2q7‘d2

3c°

P

Larmor Formula states that any charged particle radiates when accelerated and
that the total radiated power is proportional to the square of the acceleration.

Radiation are only emitted when particle are accelerated.

Since the astrophysical accelerations are usually electromagnetic, the acceleration
is usually proportional to the charge/mass ratio of the particle.

Radiation from electrons is typically ~10° stronger than radiation from protons,
which are ~103 times more massive.

Larmor's equation will be applied in many contexts
e.g. dipole approximation as well as for free-free
synchrotron emission from astrophysical sources



Larmor’s Formula
_ 2q%°

3c°

P

Limitations:
v" Larmor's formula is nonrelativistic; it is valid only in frames moving at
velocities v<<c with respect to the radiating particle.

v' To treat particles moving at nearly the speed of light in the observer's frame,
we must use Larmor's equation to calculate the radiation in the particle's
rest frame and then transform the result to the observer's frame in a
relativistically correct way.

v Larmor's formula does not incorporate the constraints of quantum
mechanics, so it should be applied with great caution to microscopic systems
such as atoms. For example, Larmor's equation incorrectly predicts that the
electron in a hydrogen atom will quickly radiate away all of its kinetic energy
and fall into the nucleus.



Dipole approximation

R,

)

Collection of charged particles A\

When there are many particles with position I'; velocities U;, charges (;

Radiation field at large distance ~ summation of E__ 4 for each particle

But E, 4 for each particle is true for different retarded times

How to derive radiation field?



Dipole approximation

R

)

L : scale of the system

T : time scale for changes

V : characteristic frequency of E,_ =1/t

Differences in retarded time across source is negligible ﬁ ™>L/c

Differences in retarded time can be ignored if
size of the system is small compared to wavelength

c
—>L

4
& \>L



Dipole approximation

: d=2q.r..
g nxX(nxu) - A -
— - - i nx nXd
Era 2‘ 2 R, I E., = (2 )
c‘R,
dP 2d2

= sin? @, p="
A%~ amed . I 303

Dipole approximation :
Larmor’s formula extended for a collection of non-relativistic particles




Dipole approximation
Spectrum of radiation

dw

Assuming d lies in single direction E(t)= d(l) sin ©
2
¢“R,

| Fourier transform of d(t)
E(w)= — wid(w)sin® Y L
(@)=~ = R d(1) [ e d(w)dw,
i d(t)= ~ foc wd(w)e  “'dw

Electric field in frequency domain



Dipole approximation
Spectrum of radiation

dw
Assuming d lies in single direction
. SIn®
Electric field in time domain m L(1)=4d(1) >
¢“R,
Electric field in frequency domain =) é(w) — ] wZ(](w) sin ®
¢’R,
dw % A
From Lecture 4, energy per unit area 712' = Cj(; |E(w)|2dw._

Energy per unit solid angle per frequency range, (dA= R,? dQ)

aw 1 - .
‘a*,m‘ = —-J-w“]d(w)lzsm‘(r).
¢

dW 8rw®

2
Spectrum of radiation d do 30 fd(w)l




Dipole approximation
Spectrum of radiation

Spectrum of radiation d dw - 87 ’d‘(w)lz
dw 3¢?

i

Rayleigh scattering formula
proportional to 1/A*4
(Reason for blue color of the sky)



Dipole approximation
Spectrum of radiation

dw 877(04 r 2
dw - 3(‘3 ld(w),

"

Spectrum of the emitted radiation is related to frequency of oscillation
of the dipole moments.

This property is not true for particles with relativistic velocities.



General multipole expansion

Vector Potential

A(r, )= — fd3 fd ’r_r| 5(¢'—t+|r—r|/c),

But Fourier transform of A(r,t) and j , are following

A0 = [A@wr)edr
jw(r)=fj(r.t)e‘“”dt.

Thus Vector Potential

A (r)_ f’w(r) :klr—r'ldJr/’



General multipole expansion

Let us choose origin of the co-ordinates inside source of size L

(r)= f A(r.1)e'“dr
Aw(l') fjw(r) lkif—r']d:ir/,

Then for field s r>>L, we have

Ir—r|~r—n-r

n points towards the field point r and where r=|r|

Aw(r)z(e""’/cr)j j (r)e *erdiy,

l

Effect of retardation from

the source as a whole
Relative retardation of

each element of the source



General multipole expansion

Aw(r)z(e""’/cr)j j (r)e *ordiy,
Expanding the exponential in the integral considering kL<<1,

fjw(l’ ) — ikner)"d’r

eik 00

!
n—=0 n.

Dipole approximation results from taking only the first term of the expansion (n=0)

e:’kr . ’
Aw(r)ldipolc= _C"_;- f]w(r’)d3r

Quadrupole term is the term with n=1

Aw(r)lquad ’ r f.lw(r )(n-r )d3 ,



End of Lecture 5

Mini-test on lectures 1-6
(practice problems from Rybicki and Lightman Chapter 1, 2, 3)
: 28" August

Next lecture : 237 August



