Electrodynamics and Radiative Processes I Lecture 4 - Basic theory of radiation fields

Bhaswati Bhattacharyya
bhaswati@ncra.tifr.res.in

IUCAA-NCRA Graduate School
August-September 2018

Electric and magnetic field

Static charge \rightarrow Electric field

Moving charge \rightarrow Magnetic field \rightarrow Electric current

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Gauss law: Electric field

$\oiint_{A} \mathbf{E} \cdot \mathrm{~d} \mathbf{a}=\frac{1}{\epsilon_{0}} \iiint_{V} \rho \mathrm{~d} V$

Gauss theorem

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

Flux of E through a closed surface $=($ charge inside $) / \varepsilon_{0}$

Gauss law : Magnetic field

Gauss theorem

Flux of B through a closed surface $=0$

Faraday's law

$$
\oint_{C} \mathbf{E} \cdot \mathrm{~d} l=-\frac{\mathrm{d}}{\mathrm{~d} t} \iint_{A} \mathbf{B} \cdot \mathrm{~d} \mathbf{a} \quad \stackrel{\text { Stokes theorem }}{ } \quad \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

Line integral of E around a loop $=-d / d t$ (Flux of B through the loop)

Ampere-Maxwell's law: Magnetic induction

$$
\begin{aligned}
& \Longrightarrow \\
& X_{C} \cdot \mathrm{~d} l=\mu_{0}\left(\iint_{A} \mathbf{J} \cdot \mathrm{~d} \mathbf{a}+\epsilon_{0} \iint_{A} \frac{\partial \mathbf{E}}{\partial t} \cdot \mathrm{da}\right) \stackrel{\text { Stokes theorem }}{\Longrightarrow} \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right) \\
& \text { Integral of } \mathrm{B} \text { around a loop }=(\text { Current through the loop }) \\
&+\varepsilon_{0} \mathrm{~d} / \mathrm{dt}(\text { Flux of } \mathrm{E} \text { through the loop })
\end{aligned}
$$

Maxwell's Equations (in SI units)

Integral form

$\oiint_{A} \mathbf{E} \cdot \mathrm{~d} \mathbf{a}=\frac{1}{\epsilon_{0}} \iiint_{V} \rho \mathrm{~d} V$
$\oiint_{A} \mathbf{B} \cdot \mathrm{~d} \mathbf{a}=0$
$\oint_{C} \mathbf{E} \cdot \mathrm{~d} l=-\frac{\mathrm{d}}{\mathrm{d} t} \iint_{A} \mathbf{B} \cdot \mathrm{~d} \mathbf{a}$
$\oint_{C} \mathbf{B} \cdot \mathrm{~d} l=\mu_{0}\left(\iint_{A} \mathbf{J} \cdot \mathrm{~d} \mathbf{a}+\epsilon_{0} \iint_{A} \frac{\partial \mathbf{E}}{\partial t} \cdot \mathrm{~d} \mathbf{a}\right)$

Differential form

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

$$
\nabla \cdot \mathbf{B}=0
$$

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

$$
\nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
$$

Electromagnetic flux

Lorentz force

$$
\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)
$$

Electromagnetic flux

Lorentz force

$$
\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)
$$

Rate of work done

$$
\mathbf{v} \cdot \mathbf{F}=q \mathbf{v} \cdot \mathbf{E}
$$

Current density $\quad \mathbf{j}=\lim _{\Delta V \rightarrow 0} \frac{1}{\Delta V} \sum_{\cdot i} q_{i} \mathbf{v}_{i}$,

Electromagnetic flux

Lorentz force

$$
\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)
$$

Rate of work done $\quad \mathbf{v} \cdot \mathbf{F}=q \mathbf{v} \cdot \mathbf{E}$
Current density $\quad \mathbf{j}=\lim _{\Delta V \rightarrow 0} \frac{1}{\Delta V} \sum_{. i} q_{i} \mathbf{v}_{i}$,
Rate of work done $\frac{1}{\Delta V} \sum_{i} q_{i} \mathbf{v}_{i} \cdot \mathbf{E}=\mathbf{j} \cdot \mathbf{E}$.
Rate of change in mechanical energy of system per unit volume

$$
\frac{d U_{\mathrm{mech}}}{d t}=\mathbf{j} \cdot \mathbf{E}
$$

Maxwell's Equations
 (in Gaussian units)

$$
\begin{array}{rlr}
\nabla \cdot \mathbf{D} & =4 \pi \rho & \nabla \cdot \mathbf{B}
\end{array}=0, ~\left(\begin{array}{l}
1 \\
\nabla \times \mathbf{E}
\end{array}=-\frac{1}{c} \frac{\mathbf{B}}{\partial t} \quad \nabla \times \mathbf{H}=\frac{4 \pi}{c} \mathbf{j}+\frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}\right.
$$

Maxwell's Equations
 (in Gaussian units)

$$
\begin{gathered}
\nabla \cdot \mathbf{D}=4 \pi \rho \quad \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \quad \nabla \times \mathbf{H}=\frac{4 \pi}{c} \mathbf{j}+\frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} \\
\mathbf{D}=\epsilon \mathbf{E}, \\
\mathbf{B}=\mu \mathbf{H}, \\
\nabla \cdot \mathbf{j}+\frac{\partial \rho}{\partial t}=0
\end{gathered}
$$

Electromagnetic flux

$$
\mathbf{j} \cdot \mathbf{E}=\frac{1}{4 \pi}\left[c(\nabla \times \mathbf{H}) \cdot \mathbf{E}-\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}\right]
$$

Using the following relation

$$
\begin{gathered}
\mathbf{E} \cdot(\boldsymbol{\nabla} \times \mathbf{H})=\mathbf{H} \cdot(\boldsymbol{\nabla} \times \mathbf{E})-\boldsymbol{\nabla} \cdot(\mathbf{E} \times \mathbf{H}) \\
\mathbf{j} \cdot \mathbf{E}=\frac{1}{4 \pi}\left[-\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} \cdot-\boldsymbol{\nabla} \cdot(\mathbf{E} \times \mathbf{H})-\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}\right]
\end{gathered}
$$

Electromagnetic flux

$$
\mathbf{j} \cdot \mathbf{E}=\frac{1}{4 \pi}\left[c(\nabla \times \mathbf{H}) \cdot \mathbf{E}-\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}\right]
$$

Using the following relation

$$
\begin{gathered}
\mathbf{E} \cdot(\boldsymbol{\nabla} \times \mathbf{H})=\mathbf{H} \cdot(\boldsymbol{\nabla} \times \mathbf{E})-\boldsymbol{\nabla} \cdot(\mathbf{E} \times \mathbf{H}), \\
\mathbf{j} \cdot \mathbf{E}=\frac{1}{4 \pi}\left[-\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} \cdot-\boldsymbol{\nabla} \cdot(\mathbf{E} \times \mathbf{H})-\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}\right]
\end{gathered}
$$

Poynting's theorem

Rate of change of
Mechanical energy

Rate of change of field energy $U_{E}+U_{B}$

Divergence of field energy flux

Electromagnetic flux

Electromagnetic field energy per unit volume

$$
U_{\mathrm{field}}=\frac{1}{8 \pi}\left(\epsilon E^{2}+\frac{B^{2}}{\mu}\right)=U_{E}+U_{B}
$$

Electromagnetic flux vector or Poynting vector

$$
\mathbf{S}=\frac{c}{4 \pi} \mathbf{E} \times \mathbf{H}
$$

Electromagnetic flux $\quad \mathbf{S}=\frac{c}{4 \pi} \mathbf{E} \times \mathbf{H}$.

Integrating over a volume element we get

$$
\begin{gathered}
\int_{V} \mathbf{j} \cdot \mathbf{E} d V+\frac{d}{d t} \int_{V} \frac{\epsilon E^{2}+B^{2} / \mu}{8 \pi} d V=-\int_{\Sigma} \mathbf{S} \cdot d \mathbf{A} \\
\frac{d}{d t}\left(U_{\mathrm{mech}}+U_{\mathrm{field}}\right)=-\int_{\Sigma} \mathbf{S} \cdot d \mathbf{A}
\end{gathered}
$$

Rate of change of total (mechanical plus field) energy with in the volume V is equal to the net inward flow of energy through the bounding surface.

Plane electromagnetic waves

Maxwell's equation in vacuum

$$
\begin{array}{ll}
\nabla \cdot \mathbf{E}=0 & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} & \nabla \times \mathbf{B}=\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

Wave equation

$$
\nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \quad \text { How ? }
$$

Wave equation with B ?

Plane electromagnetic waves

Maxwell's equation in vacuum

$$
\begin{array}{ll}
\nabla \cdot \mathbf{E}=0 & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} & \nabla \times \mathbf{B}=\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

Wave equation

$$
\nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0
$$

wave vector
Solutions of wave equation

Plane electromagnetic waves

Substitution in Maxwell's equation

Plane electromagnetic waves

Substitution in Maxwell's equation

$$
\begin{array}{ll}
i \mathbf{k} \cdot \hat{\mathbf{a}}_{1} E_{0}=0 & i \mathbf{k} \cdot \hat{\mathbf{a}}_{2} B_{0}=0 \\
i \mathbf{k} \times \hat{\mathbf{a}}_{1} E_{0}=\frac{i \omega}{c} \hat{\mathbf{a}}_{2} \boldsymbol{B}_{0} & i \mathbf{k} \times \hat{\mathbf{a}}_{2} \boldsymbol{B}_{0}=-\frac{i \omega}{c} \hat{\mathbf{a}}_{1} E_{0} \\
E_{0}=\frac{\omega}{k c} \boldsymbol{B}_{0}, \quad B_{0}=\frac{\omega}{k c} E_{0}, & \mathrm{a}_{2}
\end{array}
$$

Plane electromagnetic waves

Substitution in Maxwell's equation

$$
\begin{aligned}
& i \mathbf{k} \cdot \hat{\mathbf{a}}_{1} E_{0}=0 \\
& i \mathbf{k} \cdot \hat{\mathbf{a}}_{2} B_{0}=0 \\
& i \mathbf{k} \times \hat{\mathbf{a}}_{1} E_{0}=\frac{i \omega}{c} \hat{\mathbf{a}}_{2} B_{0} \quad i \mathbf{k} \times \hat{\mathbf{a}}_{2} B_{0}=-\frac{i \omega}{c} \hat{\mathbf{a}}_{1} E_{0} . \\
& E_{0}=\frac{\omega}{k c} B_{0}, \quad B_{0}=\frac{\omega}{k c} E_{0}, \\
& E_{0}=\left(\frac{\omega}{k c}\right)^{2} E_{0} \Longrightarrow \omega=c k . \\
& \text { 】 } \\
& E_{0}=B_{0} . \quad v_{\mathrm{ph}}=c . \Longrightarrow \text { EM waves travels at speed of light }
\end{aligned}
$$

Plane electromagnetic waves Energy flux and energy density

Time averaged pointing vector

$$
\langle S\rangle=\frac{c}{8 \pi} \operatorname{Re}\left(E_{0} B_{0}^{*}\right)
$$

Since $\quad E_{0}=B_{0}$.

$$
\langle S\rangle=\frac{c}{8 \pi}\left|E_{0}\right|^{2}=\frac{c}{8 \pi}\left|B_{0}\right|^{2}
$$

Similarly time averaged energy density

$$
\begin{gathered}
\langle U\rangle=\frac{1}{16 \pi} \operatorname{Re}\left(E_{0} E_{0}^{*}+B_{0} B_{0}^{*}\right) \\
\langle U\rangle=\frac{1}{8 \pi}\left|E_{0}\right|^{2}=\frac{1}{8 \pi}\left|B_{0}\right|^{2}
\end{gathered}
$$

Plane electromagnetic waves Energy flux and energy density

Time averaged pointing vector

$$
\langle S\rangle=\frac{c}{8 \pi} \operatorname{Re}\left(E_{0} B_{0}^{*}\right)
$$

Since $\quad E_{0}=B_{0}$.

$$
\langle S\rangle=\frac{c}{8 \pi}\left|E_{0}\right|^{2}=\frac{c}{8 \pi}\left|B_{0}\right|^{2}
$$

Similarly time averaged energy density

$$
\begin{gathered}
\langle U\rangle=\frac{1}{16 \pi} \operatorname{Re}\left(E_{0} E_{0}^{*}+B_{0} B_{0}^{*}\right) \\
\langle U\rangle=\frac{1}{8 \pi}\left|E_{0}\right|^{2}=\frac{1}{8 \pi}\left|B_{0}\right|^{2}
\end{gathered}
$$

Radiation spectrum $\Delta \omega \Delta t>1$
 \downarrow

with a radiation field of length Δt we can define spectrum with in $\Delta \omega$

$$
\begin{aligned}
& \hat{E}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} E(t) e^{i \omega t} d t \\
& E(t)=\int_{-\infty}^{\infty} \hat{E}(\omega) e^{-i \omega t} d \omega
\end{aligned}
$$

Energy per unit area per unit time

$$
\frac{d W}{d t d A}=\frac{c}{4 \pi} E^{2}(t)
$$

Total Energy per unit area

$$
\frac{d W}{d A}=\frac{c}{4 \pi} \int_{-\infty}^{\infty} E^{2}(t) d t
$$

Radiation spectrum

$$
\begin{gathered}
\int_{-\infty}^{\infty} E^{2}(t) d t=2 \pi \int_{-\infty}^{\infty}|\hat{E}(\omega)|^{2} d \omega . \\
\\
\downarrow \\
\int_{-\infty}^{\infty} E^{2}(t) d t=4 \pi \int_{0}^{\infty}|\hat{E}(\omega)|^{2} d \omega .
\end{gathered}
$$

$$
\frac{d W}{d A}=\frac{c}{4 \pi} \int_{-\infty}^{\infty} E^{2}(t) d t \quad \Longrightarrow \quad \frac{d W}{d A}=c \int_{0}^{\infty}|\hat{E}(\omega)|^{2} d \omega,
$$

Energy per unit area per unit frequency $\Longrightarrow \frac{d W}{d A d \omega}=c|\hat{E}(\omega)|^{2}$

Radiation spectrum

Electric field

a) pulse

b) sinusoidal pulse

Power spectrum

Time extent of pulse T determines width of finest features : $\Delta \omega \sim 1 / T$

Sinusoidal time dependence in pulse shape causes spectrum concentrated near $\omega^{\sim} \omega_{0}$

Observables

From an empiricist's point of view there are 4 observables for radiation

- Energy Flux
- Direction
- Frequency
- Polarization

Polarimetry : study of polarization of incoming radiation

Polarization of electromagnetic radiation

\checkmark Polarization is produced in various ways, including directly from some radiation processes (e.g. cyclotron and synchrotron emission), from differential absorption of radiation passing through the interstellar medium, and perhaps most commonly from the scattering of radiation.
\checkmark Property of a wave to have its Electric Field oscillating in a single plane (plane polarized wave) or in a rotating plane (elliptically or even circular polarized wave).

Polarization of electromagnetic radiation

\checkmark Polarization is produced in various ways, including directly from some radiation processes (e.g. cyclotron and synchrotron emission), from differential absorption of radiation passing through the interstellar medium, and perhaps most commonly from the scattering of radiation.
\checkmark Fractional polarizations detected from astronomical objects can be very high
(pulsars: almost fully linearly polarised) to, very low
(sun: one of the most sensitive polarization measurements ever made was by James Kemp in 1987, who showed that the fractional linear polarization of light from the Sun was $\sim 10^{-7)}$

Polarization of electromagnetic radiation

\checkmark Polarimetry, is a method used to study the polarization of incoming radiation and can provide substantial clues to the nature of the source.
\checkmark Polarimetry is used to extract information such as the strength of magnetic fields in the interstellar medium (ISM), provide evidence for inflation by observations of the CMB polarization, motivate a unified model for active galactic nuclei (AGN), probing emission geometry for pulsars etc.

Polarization of electromagnetic radiation

\checkmark Study of polarization of electromagnetic plane waves from astrophysical sources and modification of the polarization in the medium.
\checkmark Plane waves are described by oscillating electric and magnetic fields, whose field vectors are orthogonal to each other and the direction of propagation.
\checkmark By convention, astronomers describe the polarization of light only in terms of the electric field vector (because E and B are orthogonal).

Maximum observed or expected degree of polarization for different astronomical objects

```
Radio
galactic continuum 70%
quasars (integrated / resolved) 15% / 70%
Crab nebula 30%
pulsars (linear / circular)
80% / 70%
Optical
\begin{tabular}{ll}
\hline planets & \(>20 \%\) \\
interstellar dust acting on starlight (linear) & \(10 \%\) \\
interstellar dust acting on starlight (circular) & \(0.05 \%\) \\
Sun and \(\mathrm{A}_{p}\) stars (Zeeman effect) & \(100 \%\) \\
white dwarfs (Zeeman effect) & \(12 \%\) \\
symbiotic stars (Raman scattering) & \(8 \%\) \\
reflection nebulae (including Herbig-Haro and bipolar & \(60 \%\) \\
post-AGB stars and proto-PN (global polarisation) & \(30 \%\) \\
synchrotron (Crab nebula, blazars) & \(50 \%\) \\
synchrotron (extragalactic jets) & \(20 \%\) \\
Crab pulsar & \(10 \%\) \\
X-ray (mainly 'expected') & \\
\hline solar flares & \(5 \%\) \\
Crab nebula & \(15 \%\) \\
accreting X-ray pulsars & \(80 \%\) \\
rotation-powered X-ray pulsars & \(10 \%\) \\
black hole (Lense-Thirring effect Cyg X-1) & \(2 \%\) \\
active galactic nuclei & \(20 \%\) \\
Seyfert accretion disc reprocessing & \(5 \%\) \\
\hline
\end{tabular}
Credit: Agnieszka Słowikowska These are approximate numbers \(\gamma\)-ray ('expected') May not be updated
```

[^0]
Stokes parameters

\checkmark The polarization can be described by the shape that the tip of E traced out over the course of a period, and it can be linear, circular, or elliptical.

Stokes parameters were defined by George Gabriel Stokes in 1852, as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (I), (fractional) degree of polarization (p), and the shape parameters of the polarization ellipse

Polarization of electromagnetic radiation

Specific case
We discussed about monochromatic plane wave

$$
\begin{gathered}
\mathbf{E}=\hat{\mathbf{a}}_{1} E_{0} \mathrm{e}^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \\
\downarrow \\
\text { Oscillates along } \mathrm{a}_{1}
\end{gathered}
$$

Superposition of two such oscillations in perpendicular direction

$$
\mathbf{E}=\left(\hat{\mathbf{x}} E_{1}+\hat{\mathbf{y}} E_{2}\right) e^{-i \omega t} \equiv \mathbf{E}_{0} e^{-i \omega t}
$$

E_{1} and E_{2} are complex amplitude and can be written as

Polarization of electromagnetic radiation

Superposition of two such oscillations in perpendicular direction

$$
\mathbf{E}=\left(\hat{\mathbf{x}} E_{1}+\hat{\mathbf{y}} E_{2}\right) e^{-i \omega t} \equiv \mathbf{E}_{0} e^{-i \omega t}
$$

Considering real part of E, physical component of electric fields along x and y direction

Polarization of electromagnetic radiation

Equations describing tip of E in x - y plane

$$
E_{x}=\mathcal{E}_{1} \cos \left(\omega t-\phi_{1}\right), \quad E_{y}=\mathcal{E}_{2} \cos \left(\omega t-\phi_{2}\right)
$$

Figure traced out by tip of E is an ellipse
Equations for a general ellipse relative to its principal axes x^{\prime} and y^{\prime}

$$
E_{x}^{\prime}=\mathcal{E}_{0} \cos \beta \cos \omega t, \quad E_{y}^{\prime}=-\mathcal{E}_{0} \sin \beta \sin \omega t
$$

Polarization of electromagnetic radiation

Superposition of two such oscillations in perpendicular direction

$$
\mathbf{E}=\left(\hat{\mathbf{x}} E_{1}+\hat{\mathbf{y}} E_{2}\right) e^{-i \omega t} \equiv \mathbf{E}_{0} e^{-i \omega t}
$$

Elliptically Polarized

$$
E_{y}^{\prime}=-\mathcal{E}_{0} \sin \beta \sin \omega t
$$

Equation of tip of electric field vector determines
 type of polarisation

$$
\left(E_{x}^{\prime} / \mathscr{E}_{0} \cos \beta\right)^{2}+\left(E_{y}^{\prime} / \mathscr{E}_{0} \sin \beta\right)^{2}=1
$$

$$
1
$$

Elliptically Polarized

$\mathrm{O}<\beta<\pi / 2 \longrightarrow$| Clockwise ellipse |
| :--- |
| Right-handed polarization |

$-\pi / 2<\beta<0 \longrightarrow$| Anti-Clockwise ellipse |
| :--- |
| Left-handed polarization |

Polarization of electromagnetic radiation

Two special cases of elliptical polarization

Polarization and stokes parameters

$$
E_{x}^{\prime}=\mathscr{E}_{0} \cos \beta \cos \omega t, \quad E_{y}^{\prime}=-\mathcal{E}_{0} \sin \beta \sin \omega t
$$

Thus

$$
\begin{aligned}
& E_{x}=\mathscr{E}_{0}(\cos \beta \cos \chi \cos \omega t+\sin \beta \sin \chi \sin \omega t) \\
& E_{y}=\mathscr{E}_{0}(\cos \beta \sin \chi \cos \omega t-\sin \beta \cos \chi \sin \omega t)
\end{aligned}
$$

Polarization and stokes parameters

$$
E_{x}^{\prime}=\mathscr{E}_{0} \cos \beta \cos \omega t, \quad E_{y}^{\prime}=-\mathcal{E}_{0} \sin \beta \sin \omega t
$$

Thus

$$
\begin{aligned}
& E_{x}=\mathscr{E}_{0}(\cos \beta \cos \chi \cos \omega t+\sin \beta \sin \chi \sin \omega t) \\
& E_{y}=\mathscr{E}_{0}(\cos \beta \sin \chi \cos \omega t-\sin \beta \cos \chi \sin \omega t)
\end{aligned}
$$

However (in slide 34),

$$
\begin{aligned}
E_{1}=\mathscr{E}_{1} e^{i \phi_{1}}, & E_{2}=\mathcal{E}_{2} e^{i \phi_{2}} \\
E_{x}=\mathcal{E}_{1} \cos \left(\omega t-\phi_{1}\right), & E_{y}=\mathcal{E}_{2} \cos \left(\omega t-\phi_{2}\right)
\end{aligned}
$$

Consider,

$$
\begin{aligned}
\mathscr{E}_{1} \cos \phi_{1} & =\mathscr{E}_{0} \cos \beta \cos \chi \\
\mathscr{E}_{1} \sin \phi_{1} & =\mathscr{E}_{0} \sin \beta \sin \chi \\
\mathscr{E}_{2} \cos \phi_{2} & =\mathscr{E}_{0} \cos \beta \sin \chi \\
\mathcal{E}_{2} \sin \phi_{2} & =-\mathscr{E}_{0} \sin \beta \cos \chi
\end{aligned}
$$

Polarization and stokes parameters

$\mathcal{E}_{1} \cos \phi_{1}=\mathscr{E}_{0} \cos \beta \cos \chi$,
$\mathcal{E}_{1} \sin \phi_{1}=\mathcal{E}_{0} \sin \beta \sin \chi$,
$\mathcal{E}_{2} \cos \phi_{2}=\mathcal{E}_{0} \cos \beta \sin \chi$,
$\mathcal{E}_{2} \sin \phi_{2}=-\mathcal{E}_{0} \sin \beta \cos \chi$.

Stokes parameters

$$
\begin{aligned}
I & \equiv \mathscr{E}_{1}^{2}+\mathscr{E}_{2}^{2}=\mathscr{E}_{0}^{2} \\
Q & \equiv \mathscr{E}_{1}^{2}-\mathscr{E}_{2}^{2}=\mathscr{E}_{0}^{2} \cos 2 \beta \cos 2 \chi \\
U & \equiv 2 \mathscr{E}_{1} \mathscr{E}_{2} \cos \left(\phi_{1}-\phi_{2}\right)=\mathscr{E}_{0}^{2} \cos 2 \beta \sin 2 \chi \\
V & \equiv 2 \mathscr{E}_{1} \mathscr{E}_{2} \sin \left(\phi_{1}-\phi_{2}\right)=\mathscr{E}_{0}^{2} \sin 2 \beta .
\end{aligned}
$$

Polarization and stokes parameters

 Stokes parameters$$
I^{2}=Q^{2}+U^{2}+V^{2}
$$

Valid for Monochromatic wave

$$
\begin{aligned}
I & \equiv \mathscr{E}_{1}^{2}+\mathscr{E}_{2}^{2}=\mathfrak{E}_{0}^{2} \\
Q & \equiv \mathscr{E}_{1}^{2}-\mathscr{E}_{2}^{2}=\mathfrak{E}_{0}^{2} \cos 2 \beta \cos 2 \chi \\
U & \equiv 2 \mathscr{E}_{1} \mathscr{E}_{2} \cos \left(\phi_{1}-\phi_{2}\right)=\mathfrak{E}_{0}^{2} \cos 2 \beta \sin 2 \chi \\
V & \equiv 2 \mathscr{E}_{1} \mathscr{E}_{2} \sin \left(\phi_{1}-\phi_{2}\right)=\mathscr{E}_{0}^{2} \sin 2 \beta .
\end{aligned}
$$

$$
\longrightarrow \begin{aligned}
\mathcal{E}_{0} & =\sqrt{I} \\
\sin 2 \beta & =\frac{V}{I} \\
\tan 2 \chi & =\frac{U}{Q}
\end{aligned}
$$

\checkmark I is Proportional to intensity of wave (+ve)
\checkmark Circularity parameter measure ratios of axes of the ellipse +ve for Right-handed polarization -ve for left handed polarization $\mathrm{V}=0$ for linear polarization
$\checkmark \mathrm{Q} / \mathrm{U}$ measures orientation of ellipse relative to x -axis $\mathrm{Q}=\mathrm{U}=0$ for circular polarization

Polarization and stokes parameters

Quasi monochromatic waves, $\quad E_{1}(t)=\mathcal{E}_{1}(t) e^{i \phi_{1}(t)}, \quad E_{2}(t)=\mathcal{E}_{2}(t) e^{i \phi_{2}(t)}$

$$
\begin{aligned}
& I \equiv\left\langle E_{1} E_{1}^{*}\right\rangle+\left\langle E_{2} E_{2}^{*}\right\rangle=\left\langle\mathcal{E}_{1}^{2}+\mathscr{E}_{2}^{2}\right\rangle \\
& Q \equiv\left\langle E_{1} E_{1}^{*}\right\rangle-\left\langle E_{2} E_{2}^{*}\right\rangle=\left\langle\mathcal{E}_{1}^{2}-\mathcal{E}_{2}^{2}\right\rangle \\
& U \equiv\left\langle E_{1} E_{2}^{*}\right\rangle+\left\langle E_{2} E_{1}^{*}\right\rangle=\left\langle 2 \mathcal{E}_{1} \mathcal{E}_{2} \cos \left(\phi_{1}-\phi_{2}\right)\right\rangle \\
& V \equiv \frac{1}{i}\left(\left\langle E_{1} E_{2}^{*}\right\rangle-\left\langle E_{2} E_{1}^{*}\right\rangle\right)=\left\langle 2 \mathcal{E}_{1} \mathcal{E}_{2} \sin \left(\phi_{1}-\phi_{2}\right)\right\rangle \\
& \qquad I^{2} \geqslant Q^{2}+U^{2}+V^{2}
\end{aligned}
$$

Degree of polarization,

$$
\Pi \equiv \frac{I_{\mathrm{pol}}}{I}=\frac{\sqrt{Q^{2}+U^{2}+V^{2}}}{I}
$$

Further reading

Poincare Sphere : a graphical tool to visualize different types of polarized radiation

Further reading

Mueller Matrix : Method for transforming Stokes parameters

$$
\left(\begin{array}{c}
S_{0}^{\prime} \\
S_{1}^{\prime} \\
S_{2}^{\prime} \\
S_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & m_{23} \\
m_{30} & m_{31} & m_{32} & m_{33}
\end{array}\right)\left(\begin{array}{c}
S_{0} \\
S_{1} \\
S_{2} \\
S_{3}
\end{array}\right)
$$

End of Lecture 4

Next lecture : $21^{\text {th }}$ August

[^0]: pulsars

