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A	luminous	opaque	body	behaves	like	a	black	body		
emits	frequencies	of	all	wave	lengths	and	produces	con-nuous	spectrum	
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Tanuous		body	

Emission	lines	superimposed	on	faint	con-nuous	spectra.	
Intensity	of	con-nuum	or	the	emission	lines	can	never	exceed	black	body	at	any	point				
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Einstein	Coefficients	
First	deriva-on	of	Planck’s	func-on		

	



Einstein	Coefficients		
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S-mulated	absorp-on	
B12	(dependent	on	radia-on)		

This	occurs	in	presence	of	photons	of	energy		hνo	
Energy	difference	between	two	levels	is	not	infinitely	sharp		
Described	by	a	line	profile	func-on	Φ(ν)				

νo	

Δν	

S-mulated	absorp-on	rate		

Remember	(from	Lecture	1,	slide	16)	



Einstein	Coefficients		
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S-mulated	emission	
B21(dependent	on	radia-on)	

Photons	of	energy		hνo	is	emi?ed.	
Energy	difference	between	two	levels	is	not	infinitely	sharp		
Described	by	a	line	profile	func-on	Φ(ν)				

νo	

Δν	

S-mulated	emission	rate		
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Spontaneous	emission	
A21(independent	of	radia-on)	

Occurs	when	system	in	level	2	goes	to	1,	emits	a	photon	of	energy		hνo	
It	occurs	even	in	absence	of	radia-on	fields		

Spontaneous	emission	rate			
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S-mulated	absorp-on	
B12	(dependent	on	radia-on)		

S-mulated	emission	
B21(dependent	on	radia-on)	

Spontaneous	emission	
A21(independent	of	radia-on)	

Rate	1	to	2	=	Rate	2	to	1		
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In	thermal	equilibrium			
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S-mulated	absorp-on	
B12	(dependent	on	radia-on)		

S-mulated	emission	
B21(dependent	on	radia-on)	

Spontaneous	emission	
A21(independent	of	radia-on)	

Rate	1	to	2	=	Rate	2	to	1		

In	thermal	equilibrium			

Mean	specific	intensity		

=>		Plank	Func-on		



Einstein	Coefficients		
	



Einstein	Coefficients		
	

These	rela-ons	must	hold	whether	or	not	there	is	thermodynamic	equilibrium.	



Einstein	Coefficients		
	

Wien	Law	hν	>>	kT	



Einstein	Coefficients		
	

Whenever	there	is	s-mulated	emission,	there	has	to	be	spontaneous	emission.		

Ø  Einstein	coefficients	connect	the	atomic	proper-es	A21	,	B21	and	B12	and	have		
no	rela-on	to	temperature.	
	
Ø  If	we	determine	any	one	of	these	coefficient	then	that	will	allow	us	to	determine	
other	two.	
	
Ø  Einstein	had	to	include	the	process	of	simulated	emission	as	without	it	he		
could	not	get	Planck’s	Law.	



Einstein	Coefficients		
	

Whenever	there	is	s-mulated	emission,	there	has	to	be	spontaneous	emission.		

	
Ø  Einstein	had	to	include	the	process	of	simulated	emission	as	without	it	he		
could	not	get	Planck’s	Law.	
hν>>kT	level	2	is	sparsely	populated	compared	to	level	1	i.e.	n2<<n1	
S-mulated	emission	is	unimportant	compared	to	absorp-on,	since	these	are	
propor-onal	to	n2	and	n1.	





Emission	coefficient	in	terms	of	Einstein	
Coefficients		

	Amount	of	energy	emi?ed	in	volume	dV,	solid	angle	dΩ	frequency	dν	and	-me	dt	

Each	atom	contributes	energy	hν0	distributed	over	4π	solid	angle	

(slide	19,	Lecture	1)	
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Emission	coefficient		
in	terms	of	Einstein	Coefficients		

	Amount	of	energy	emi?ed	in	volume	dV,	solid	angle	dΩ	frequency	dν	and	-me	dt	

Each	atom	contributes	energy	hν0	distributed	over	4π	solid	angle	

Amount	of	energy	emi?ed	in	volume	dV,	solid	angle	dΩ	frequency	dν	and	-me	dt	

dE	=	

(slide	19,	Lecture	1)	



Absorp-on	coefficient		
in	terms	of	Einstein	Coefficients		

	
Amount	of	energy	emi?ed	in	volume	dV,	solid	angle	dΩ	frequency	dν	and	-me	dt	

dE	=	



Absorp-on	coefficient		
in	terms	of	Einstein	Coefficients		

	
Amount	of	energy	emi?ed	in	volume	dV,	solid	angle	dΩ	frequency	dν	and	-me	dt	



Absorp-on	coefficient		
in	terms	of	Einstein	Coefficients		

	
Amount	of	energy	emi?ed	in	volume	dV,	solid	angle	dΩ	frequency	dν	and	-me	dt	

Absorp-on	coefficient	

Absorp-on	coefficient	corrected	for	s-mulated	emission	



Radia-ve	transfer	equa-on		
in	terms	of	Einstein	Coefficients		

	
Replacing	the	emission	and	the	absorp-on	coefficients		
in	the	radia-ve	transfer	equa-on	

Source	func-on	
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Radia-ve	transfer	equa-on		
in	terms	of	Einstein	Coefficients		

	
Replacing	the	emission	and	the	absorp-on	coefficients	in	the		
radia-ve	transfer	equa-on	

Source	func-on	



Special	cases	
1.	Thermal	emission	

If	the	ma?er	is	in	thermodynamic	equilibrium		
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If	the	ma?er	is	in	thermodynamic	equilibrium		

Correc-on	factor	due	to	s-mulated	emission	



Special	cases	
1.	Thermal	emission	

If	the	ma?er	is	in	thermodynamic	equilibrium		

Correc-on	factor	due	to	s-mulated	emission	



Special	cases	
2.	Non-thermal	emission	

For	all	other	cases	where	thermal	equilibrium	is	not	achieved	



Special	cases	
3.	Inverted	Popula-ons		

For	a	system	with	thermal	equilibrium	we	have		

Such	systems	are	called	normal	popula-on			

It	is	possible	to	put	enough	atoms	in	the	upper	state	so	that	we	have	popula-on		
inversion			

Absorp-on	coefficient	is	nega-ve	



Einstein	Coefficients		
	

From	a	quantum	electrodynamics	treatment	of	spontaneous	emission,	it	
may	be		shown		

Radia-on	is	due	to	change	of	dipole	moment.	
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21cm	emission	line		
	Hydrogen	is	the	most	abundant	element	in	the	interstellar	medium	(ISM),	but	

the	symmetric	H2	molecule	has	no	permanent	dipole	moment	and	hence	does	
not	emit	a	detectable	spectral	line	at	radio	frequencies.		

Neutral	hydrogen	(HI)	atoms	are	abundant	in	low-density	regions	of	the	ISM.		
They	are	detectable	in	the	21	cm	(~1420	MHz)	hyperfine	line.	
	Two	energy	levels	result	from	the	magne-c	interac-on	between	quan-zed		
electron	and	proton	spins.		When	the	rela-ve	spins	change	from	parallel	to		
an-parallel,	a	photon	is	emi?ed.	

	However	a	large	frac-on	of	what	we	know	about	the	universe	comes	from	studying	
the	universe	at	21	cm		



Radia-ve	Transfer			
	

²  Radia-on	is	ul-mately	produced	by	quantum	mechanical	transi-ons	in		
which	electrons	move	from	one	level	to	another	
	
²  In	an	ensemble	of	atoms/molecules	occupancy	of	these	energy	levels	is	given		

By	Boltzman	distribu-on	e-E/KT	->ma?er	is	in	thermal	equilibrium	
	

²  In	diffuse	ma?er	when	τ	<<1	the	photons	retain	their	signature.	
	

²  In	an	opaque	body	when	τ	>>1	the	radia-on	loses	all	its	memory	during	the	
Process	of	mul-ple	absorp-on	and	emission	and	behave	like	a	black	body.	
This	is	why	spectrum	of	radita-on	is	characterised	by	temperature	and	not	by	any		
other	property	of	ma?er.	

²  In	most	astrophysical	situa-on	ma?er	and	radia-on	are	not	in	thermodynamic		
equilibrium	and	so	we	are	not	dealing	with	opaque	ma?er.	
(examples	of	opaque	body	:	early	universe	and	interiors	of	stars)	

Radia-ve	Transfer		=	change	in	Iν	as	radia-on	propagats	



From	an	empiricist’s	point	of	view	there	are	4	observables	for	
radia-on	
•	Energy	Flux	
•	Direc-on	
•	Frequency	
•	Polariza-on	

Observables		

More	on	these	in	coming	lectures		



End	of	Lecture	3	

Next	lecture	:	16th	August	


