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Abstract. Exploration of the time domain — variable and transient otgi@and phe-
nomena — is rapidly becoming a vibrant research frontierching on essentially ev-
ery field of astronomy and astrophysics, from the Solar sydte cosmology. Time
domain astronomy is being enabled by the advent of the newrggon of synoptic
sky surveys that cover large areas on the sky repeatedlyg@merating massive data
streams. Their scientific exploration poses many challendg@gven mainly by the need
for a real-time discovery, classification, and follow-uptloé interesting events. Here
we describe the Catalina Real-Time Transient Survey (CRRh&) discovers and pub-
lishes transient events at optical wavelengths in real titnes benefiting the entire
community. We describe some of the scientific results to,datd then focus on the
challenges of the automated classification and prioribpadf transient events. CRTS
represents a scientific and a technological testbed andig@cfor the larger surveys
in the future, including the Large Synoptic Survey Telesc@pSST) and the Square
Kilometer Array (SKA).
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1. Introduction

Time-domain astronomy is an exciting and rapidly growinge@ch frontier, ranging from the

Solar system to cosmology and extreme relativistic phemameé number of important astro-

physical phenomena can be discovered and studied only itinteedomain, e.g. supernovae
and other types of cosmic explosions. Variability is obséren time scales ranging from mil-

liseconds to the Hubble time (by extrapolation). It comesrfra broad range of physics, from
magnetic field reconnections to shocks, cosmic explosiand, gravitational collapse. Time-

domain studies often provide important — or even unique igis into the observed phenomena.
There is also a real and exciting possibility of a discovemew types of objects and phenom-
ena. Opening new domains of the observable parameter sfiandeads to new and unexpected
discoveries.

The field has been fueled by the advent of the new generatidigitél synoptic sky surveys,
which cover the sky many times, as well as the ability to respapidly to transient events
using robotic telescopes. This new growth area of astrapbysms been enabled by information
technology, continuing evolution from large panoramicitdilgsky surveys, to panoramic digital
cinematography of the sky. The sky is now a dynamic entitsgngiing all the time.

Numerous surveys and experiments have been exploringrtteedomain at a full range of
wavelengths, and ever more ambitious ones are being planmest notably the Large Synop-
tic Survey Telescope (LSST; lvezic et al. 2008), or the Sgu&tometer Array (SKA) and its
precursors. Focusing on the visible regime, some of the iogggurveys include, for example,
the Robotic Optical Transient Search Experiment (ROT3EAKerlof et al. 2003), the All Sky
Automated Survey (ASAS-3; Pojmaki 2001), the Palomar Transient Factory (PTF; Rau et al.
2009), the Pan-STARRS, (Kaiser et al. 2002) and the Skynmigiedier et al. 2007), to name
just a few.

Here we describe the Catalina Real-Time Transient Sunweypdical filterless survey for
transients (CRTShttp://crts.caltech.edu/; Drake et al. 2009; Djorgovski et al. 2011a).
The key motivation behind this project is a systematic esgilon of the time domain in astron-
omy. CRTS is producing a steady stream of discoveries, aaltbdt serves as a scientific and
technological testbed for the larger synoptic sky surveysoime.

CRTS is a direct descendant of the Palomar-Quest Eventryaatreal-time transient detec-
tion pipeline that operated as a part of the Palomar-Quegtg(PQ;http://palquest.org/;
Djorgovski et al. 2008), from 2006 September to the end ofstimeey in 2008 September. De-
tection of transients, filtering of artifacts, real-timesetronic publishing of events, follow-up
strategies, earlyfforts on automated classification of events, and many othenatipnal issues
have been developed as a part of that survey, and used asddrabe CRTS survey. (We note
that the PTF survey also uses essentially the same opezhtimudel, at the same telescope as
PQ, but with a much better camera, and with no real-time phbig of events.)

One key distinguishing feature of the CRTS survey is its egata policy: detected transients
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Figure 1. Examples of a few transients from CRTS. Just the discovery image®provide enough
information for classification. Rapid follow-up is critical for that purpos¢ere, for instance, imaging in
multiple filters, spectra and association with a radio source were usedthgsifeccation (Djorgovski et al.
2011a).

are published electronically in real time, with no propeist period at all, thus enabling a more
rapid and diverse follow-up, and benefiting the entire comityu CRTS is perhaps the only

major sky survey so far with such a policy, and we hope to eragmisuch an approach by other
surveys in the future. As the data rates and volumes conthrieexponential growth, the focus

of value shifts to the ownership of expertise, and not theayghip of the data. Moreover, it

is already impossible for any given group to fully exploitstiexponential data richness. The
data-possessive approach is neitif&cient nor appropriate.

In the next few sections we describe briefly the CRTS survel/the process of detecting
transients, and some of the scientific results to date. We diescribe the forts on automated
characterization and classification of these transiemtsimgortant first step for their scientific
exploration, and outline the future possibilities. Fig.hbws a few examples of transients from
CRTS.

2. Catalina Sky Survey

NASA's Near-Earth Objects Observations Program resuiltechfa 1998 congressional directive
to identify 90% of near-earth objects (NEOs), which inclsiteth asteroids and cometsl km

in diameter and with a perihelion distanee1.3 AU. This dfort is known informally as the
Spaceguard goal (Morrison 1992). The Catalina Sky Surv&8)CMt. Lemmon Survey (MLS),
and Siding Spring Survey (SSS), together referred to as #tali@a Sky Survey (Larson et al.
2003; Larson 2007), has contributed to the Spaceguard reafiyacarrying out a sustained
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Figure 2. Catalina obtains images of predefined, standard fields that are uniqaettes@rvey. Here, fields
are shown superimposed over Orion.

search for NEOs since 2004. Each of Catalina’s three sureydoys telescopes with unique,
complementary capabilities, and are all equipped with tidahcameras with 4K4K, back-
illuminated detectors cooled to cryogenic temperaturesS & a 0.68-m/L.9 classical Schmidt
at Mt. Bigelow, Arizona with a B° field of view and the scale of 2.5”/pixel, MLS is a 1.5-m
f/2 reflector at Mt. Lemmon, Arizona with aZ field of view and~ 1.0”/pixel, and SSS is a
0.5-m §3 Uppsala Schmidt at Siding Spring, Australia with.&Zield of view and~ 1.8”/pixel.

The telescopes operate every clear night for about 23 daylamation. Predefined, standard
fields (see Fig. 2 for an example) are observed four tirtEsminutes apart for30 seconds with
a small dither between exposures. Observations with CS8rgemized to exploit its medium-
faint, wide-field characteristics, and allow complete skyarage down to aboet30° declination
in one lunation using 30 second exposures. SSS often usesrtrsaxposure (20 seconds)
that allows it to cover the southern sky south-e25° declination each lunation. The MLS,
with a field of view of one square degree, cannot hope to cdwersky each lunation, and so
Catalina exploits its faint-reach, surveying a regiet0 degrees along the ecliptic each month
using 30-40 second exposures. All Catalina surveys aveidsdlactic plane, where high star
density produces many false detections and confusing bléiojd> 10 for SSS and LMS and
|b| > 20 for CSS which has a larger plate scale). Statistics cadily the NEO Program fBce
(http://neo.jpl.nasa.gov/stats/) reveals that CSS has made a significant fraction of all
new finds since 2005. Through the most recently completefdyleakr of record keeping, CSS
has discovered more NEOs than any other survey and 66 pestaltNEOs discovered since
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Figure 3. Coverage from the 3 CSS telescopes (as of 2011 August). The am@d@nd maximum number
of epochs for SSS are 15960 sq deg, and 90 nights; for MLS they23® g deg. and 81 nights and for
CSS the numbers are 24984 sq deg. and 121 nights. With 4 epochs duriglgt, the maximum number
of epochs for CSS is thus close to 500. Total area for all three suwitlyst least 20 images is 32276 sq.
degrees.

2005. The cadence allows us to detect transients varyingra@stales from minutes to years.
In addition, the four image sequence provides a significata for asteroids when looking for
transients and for artifacts that often cannot be distisigeil from genuine rapid transients in
pairs of exposures. Fig. 3 shows the current sky coverageeithree surveys. CRTS uses the
CSS streams for transient detection.

3. Transient detection

One of the main goals of CRTS has been the detection and ¢haration of transients. For our
purposes, all genuine non-moving objects that brighten dsrain amount are transients. These
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Figure 4. Magnitude distribution for various types of tran-
sients found in the three Catalina surveys. CSS is top left,
MLS top right, and SSS bottom left. A majority of the
class labeled as Ambiguous are of type/SM i.e. when

the brightening of a source makes it cross the transient de-
tection threshold the historic lightcurve is not unambiguous
about possible past brightenings (something that will rule
against a SN), there is no host galaxy (otherwise a SN is
more likely), no nearby radio source (else a blazar is possi-
ble). The distribution of magnitudes of these sources sug-
gest that the SN among them are typically brighter than
average SN and could be associated with dwarf or fainter
galaxies. On the other hand, the CVs in this population
would be fainter than the typical population.

count

include intrinsic variables (e.g. blazars, supernovaeyeextrinsic variable (e.g. eclipsing bi-
naries). Methods and techniques félieetive dissemination of alerts were improving in parallel
with the progress of the survey. An important aspect of eadgsification is access to additional
information about the event either its past history in therf@f images and lightcurves, atod
newer specific observations. Since follow-up observatemesalways a bottleneck the transient
detection threshold was kept high initially so that only ktetant transients will pass through the
pipeline.

As part of its routine processing CSS uses sextractor tarob&talogs from images. Using
G-stars in the field the nonfiltered magnitudes are conveadebbhnsorV. The latest catalogs
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Table 1. CRTS Alert statistics as of 2011 August — some in multiple classes. TH8IC¥lass mentioned
here is what forms the bulk of the Ambiguous class in Fig. 4.
Tel AllOTs SNe CVs Blazars Ag#tares CVYSN AGN Other

CSS 2041 619 507 114 185 274 210 194
MLS 1547 193 36 14 124 355 728 217
SSS 277 28 111 7 5 50 18 60
Total 3865 840 654 135 314 679 956 471

are compared with corresponding catalogs obtained for dlheesarea by co-adding at least 20
images from the past. The deeper co-added image ensureth¢hadbmparison is being done
with a higher 3N catalog and thus not many spurious objects and artifacts fiee software
filters. An additional check is done by comparing the catalih the higher resolution catalogs
such as from PQ, Sloan Digital Sky Survey (SDSS) and the USaNabservatory (USNO-
B). The cadence of taking four images ten minutes apart ig useful in separating asteroids.
Such asteroids, as well as artifacts, saturations, aiepleails etc. are removed from potential
candidates. After that objects that have brightened s@aifly (as much as two magnitudes
at the fainter end) are marked as transients. A cross-clsedkrne with known transients (past
outbursts), radio, X-ray and other catalogs. Typicallya&bjects per million pass this threshold.
These are published on webpages and alerts sent as VOEsgent$Séc. 5.8) within minutes
of the data having been taken. A small number of artifacts eotlgrough (e.g. High Proper
Moation (HPM), stars which are genuine objects but not realdients). We are starting to use an
automated tool to remove these (see Sec. 5.1), but mearnivede are noted after a check by eye
and the purer stream posted on a separate webpage with aflag ofinutes to hours.

4. A sampling of the discoveries

As shown in Table 1, CRTS has been producing various kindsaofsients regularly. These
include several types of supernovae (SNe), Cataclysmiaas (CV), blazars, Active Galactic
Nuclei (AGN), UV Ceti and other flaring stars, Mira and othégliramplitude variability stars.
Fig. 4 shows the distribution of some of the more common elsss a function of magnitude.

An example of a notable CRTS discovery is the type lin supexra®008fz, the most lumi-
nous SN discovered until that time (Fig. 1 of Drake et al. 2@38l-Yam 2009). Another example
is the very long-lasting SN 2008y, a type 1l SN, which toolep¥00 days to reach its peak. Such
events possibly originate in pre-explosion mass loss fluamassivey Carinae type progenitors
with the SN shock propagating through the stellar wind @jéot a considerable time leading to
the long rise time.

Another interesting transient is CSS100217:102941220 atz = 0.147 (Drake et al.
2011b; Fig. 6) with a light curve of a SN IIn, but making it thest luminous SN ever detected
superceding SN 2008fz; the spectra are consistent with aofrthe pre-explosion Narrow-Line
Seyfert 1 (NLS1) AGN, and a SN lin. Hubble Space TelescopeTjHdd Keck AO images
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reveal that the event occurred withiri50 pc of the nucleus, well within the narrow-line region.
The progenitor could be a massive star, the formation of whias been long predicted in the
unstable outer parts of AGN accretion disks (Shlosman & Bege 1987); see also Jiang &
Goodman (2011). We are looking in the archival data for maghscases of SNe from AGNSs.

Since SNe, like all other transients from CRTS are based angdin magnitudes as ascer-
tained from catalogs, we find more of these that are assdcveta faint or dwarf galaxies (see
Fig. 7). These are likely to represent a population that goeerrepresented in usual image-
subtraction based SN surveys. For more details, see Djskgeval. (2011b).

Blazars are often targetted for optical follow-up followittheir outbursts at other wave-
lengths. CRTS provides an unbiased optical monitoring efhtire sky it covers, and also helps
detect new sources. Based on the nature of variability (Seand association with previously
cataloged, often faint, radio sources we have found set@malof blazar-like sources. Using the
variability of light-curves, we are also searching for cterparts of unassociatdgrmi sources
(Fermi-LAT 2011) by obtaining archival light curves oveweeal years for all objects in their
error ellipses. The data are being combined with radio data the Owens Valley Radio Ob-
servatory and Fermi data. These studies will provide a batiderstanding of the radio source
population as well as the types of gamma-ray sources (M&kbahbh, in preparation).

CRTS has discovered more than 500 dwarf nova type CVs, boritng a large fraction to the
known systems. Since many of these are often bright, andvirg®get published in real-time,
they get regularly followed by small telescopes (see WilaleR010, for instance). Similarly,
CRTS has discovered over 100 flare stars (e.g. UV Ceti) withesfbaring by several magnitudes.
Itis important to understand the distribution of these tiioas a phenomenon they are fairly well
understood. That way the characteristics will allow futsueveys to separate these quickly and
go after the rarer phenomena. The flare stars are easy todatdio the short cadence of CRTS.
Another discovery this has aided is that of eclipsing whiteads where the lightcurve shows
a decrease in brightness as a companion eclipses the whité dver a few minutes. Archival
data later revealed several more such systems with low neasganions (Drake et al. 2011a). In
addition to these there are a few FU Ori stars which are seearttinue brightening by several
magnitudes over a few years.

We do have an active follow-up program at Palomar, Keck,ouritelescopes in India and
elsewhere, and we have developed a broad, internationabriebf collaborations to this end.
However, the scientific output of CRTS is currently limitey the lack of the follow-up, with
only a small fraction of the transients covered (less tha¥ fhotometrically, and well under
10% spectroscopically). This bottleneck (especially iacdpscopy) can only get worse, as more
and larger synoptic surveys come on line.

This brief account is just indicative of the wealth of dataguced by CRTS and the possible
resulting projects. Our open-data policy benefits the erstronomical community, generating
science now, and preparing us for the larger surveys to come.
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Figure 5. An overall conceptual outline of the classification system including trahdietection, dissem-
ination, and feedback. The initial input consists of the generally spatsedescribing transient events
discovered in sky surveys (e.g. magnitudes and sky positions).eTdressupplemented by archival mea-
surements from external, multi-wavelength archives corresponditiggspatial location, if available (e.g.
radio flux and distance to nearest galaxy). Both are collected in evoldatrenic portfolios containing
all currently available information for a given event. These data arenfiadthe Event Classification En-
gine; another input into the classification process is a library of priomgiprobabilities for observing
these particular parameters if the event belongs to a glaBise output of the classification engine is a set of
probabilities of the given event belonging to various classes of interbathvare updated as more data come
in, and classifications change. This forms an input into the Follow-upitzation and Decision Engine.
It would prioritize the most valuable follow-up measurements given afsatailable follow-up assets (e.g.
time on large telescopes, Target-of-Opportunity observations, el )their relative cost functions. What
is being optimized is: (a) which new measurements would have a maximenmnaisation for ambiguous
classifications, arjdr (b) which follow-up measurements would likely yield most interestingremgegiven
the current best-guess event classification? New measurementsdamnfollow-up observations are fed
back into the event portfolios, leading to dynamically updAteated classifications, repeating the cycle.

5. Characterization and classification techniques

To understand the classification of transients, it is irdive and necessary to look at the bigger
picture involving other modules. Fig. 5 shows a schematiiciviplaces classification in the
centre and interacting with original observations, pritiormation, feedback etc. We will look
at all these in turn.

The usual scientific measurement and discovery processitegenn time scales from days
to decades after the original measurements, feeding baekntew theoretical understanding.
However, that clearly would not work in the case of phenomehare a rapid change occurs
on time scales shorter than what it takes to set up the newdrolimeasurements. This results
in the need for real-time systems, consisting of computatianalysis and decision engine, and
optimized follow-up instruments that can be deployed gi&lely in (or in near) real-time, where
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Figure 6. The remarkable transient CSS100217:10294®41220, the most luminous Supernova (type IIn)
known to date, associated with an AGN galaxy. This may be the first exavhjgeg-predicted supernovae
associated with the unstable outer regions of AGN accretion disks (Dtakle 2011b). Left: the CRTS
light curve; right: evolving spectra of the outburst, showing a combinaifdhe narrow-line Seyfert 1 (as
observed by SDSS, pre-explosion) and a Type Iin SN.

measurements feed back into the analysis immediately. du@rement to perform the analysis
rapidly and objectively, coupled with massive and persistiata streams, implies a need for
automated classification and decision making. VOEventsised for dissemination of transient
events and as the transport between tifiedint components of the classification system.

The broad classification mantra involves: (1) for the giveansient obtain contextual in-
formation, (2) using that and the discovery parametergrdene probabilities of it belonging
to various classes using priors, (3) obtain follow-up tothitsambiguate competing classes, (4)
feedback the observations and repeat until reaching ahblietprobability or determining it to
be a less than interesting transient.

In this section we describe the various classification teghes based on a variety of param-
eters including contextual information; the use of citiaeience; a fusion module to combine the
confidences of the fferent classifiers objectively, and the event publicatioctmaaism.

5.1 Artifact removal

A first step in classification is to separate genuine objacis fartifacts. We have successfully
demonstrated such separation with the PQ Survey data. Hesdb&nowledge is built by experts
looking at a subset of the images and visually classifyirgabjects as ‘real’ or ‘artifact’. Such
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Figure 7. Examples of the extreme dwarf galaxy hosts of luminous SNe. The fispamels show the
images of SN 2008hg CSS081122:094328251022 at the discovery epoch, and after it has faded away.
The next panel shows a zoom-in on the SDSS image of the field; tB8 mag host galaxy is circled,
corresponding to the absolute magnitide ~ —127 mag. The last panel shows the confirme@3 mag
host galaxy (circled) of SN 2009agCSS090213:03092d.60505, with the absolute magnitulig ~ —13
mag. Measurements of star formation rates and metallicities in these extheearé hosts will help us
understand their extreme specific SN rates, and the propensity to hashuitinous SNe.

a dataset is then used to train a supervised machine leaafgongthm (e.g. a Neural Network
andor a Decision Tree) in order to have an automatic classiboatfat allows us to reject the
false positives that the pipeline passes as transientd-{ge&). More details can be found in
Donalek et al. (2008). We will be implementing artifact diication with CRTS data.

5.2 Bayesian event classifier

The main astronomical inputs available for classificatiom ia the form of observational and
archival parameters for individual objects, which can beipto various, often independent sub-
sets. Examples of parameters include various fluxedtardnt wavelength or wavelength bands,
associated colours or hardness ratios, proximity valuespes measurements, magnitude char-
acterizations at diierent timescales. The heterogeneity and sparsity of dakee riee use of
Bayesian methods for classification a natural choice. Didiions of such parameters need to be
estimated for each type of variable astrophysical phenoménat we want to classify (Fig. 9).
This knowledge is bound to be incomplete and will have to lzelgally updated. Then an esti-
mated probability of a new event belonging to any given ctassbe evaluated from all of such
pieces of information available, as described below. Letiesote the feature vector of event
parameters as, and the object class that gave rise to this vectay,ds< y < K, whereK is the
total number of classes. While certain fields withiwill almost certainly be known, such as sky
position and brightness in selected filters, many otherpaters will be known only selectively:
brightness change over various time baselines, and oltjapes

The parameters can be divided into several subsets basaahitarisy and interdependence.
This decoupling is advantageous in two ways. First, it al@s to circumvent the ‘curse of di-
mensionality, because we will eventually have to learndbrditional distribution$(X,|y = K)
for eachk. As more components are addedxp more examples will be needed to learn the
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Figure 8. Automated classification of candidate events for PQ data, separatingsteahomical sources
from a variety of spurious candidates (instrument artifacts). Imageutsion the top show a variety of
instrumental and data artifacts which appear as spurious transientstts#tycare not present in the baseline
comparison images. The two panels on the bottom show a couple of nhogjdad parameter space pro-
jections, in which artifacts (circles) separate well from genuine objesterfaks). A multi-layer perceptron
(MLP) ANN is trained to separate them, using 4 image parameters, withemage/accuracy of 95%. See
Donalek et al. (2008) for more details.

corresponding distribution. The decomposition keeps theedsionality of each block manage-
able. Second, such decomposition allows us to cope eadityigniorance of missing variables.
We simply drop the corresponding sets. As a simple demdiwtraf the technique, we have
been experimenting with a prototype Bayesian Network (Byel, schematically illustrated in
Fig. 10. See Mahabal et al. (2008) for more details.

We use a small but homogeneous data set involving coloursansients detected in the
CRTS survey, as measured at the Palomar 1.5-m telescomin@feer referred to as P1.5m). We
have used multinomial nodes (discrete bins) for 3 colouith provision for missing values, and
a multinomial node for Galactic latitude which is alwaysg#et and is a probabilistic indicator
of whether an object is Galactic or not. The current priorsduare for five distinct classes:
cataclysmic variables (CVs), supernovae (SN), BlazargroAGNs, UV Ceti stars and all else
bundled into a sixth class, called Rest. Using a sample of$346, 277 CVs, and 104 blazars,
and a single epoch measurement of colours, in the relatagsification of CVs vs. SNe, we
obtain a completeness ef 80% and a contamination of 19%, which reflects a qualitative
colour diference between these two types of transients. In the relatassification of CVs
vs. blazars, we obtain a completeness-o¥0-90% and a contamination of 10-24% (the
ranges corresponding toftBrent BN experiments), which reflects the fact that colodithese
two types of transients tend to be similar, and that sometiaddi discriminative parameter is
needed. These numbers are based on a single epoch (up toafwds besides the incidental
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parameters) and will improve further as the priors imprdzeentually we will use a BN with an
order of magnitude more classes, more parameters, andamdilayers. The end result will be
the posteriors for th€lass node from the marginalized probabilities of all availabieuts for a
given object.

Prior distributions of various observable parameters e tikose used in the BN described
above — are being put together for a variety of distinct gétysical variable sources using the
initial event measurements from the survey pipeline, qpoading data from the federated VO
archives, and our own measurements obtained in the CRT8ysand its follow-up observations.
The parameters for which we are building (and subsequeailyating) priors include primarily
colours, light curves (flux histories) sampled atelient time baselines (e.g. measurements sepa-
rated by an hour, from night to night, etc.), r.m.s. and maxmflux variations etc., conditional
on object type such as type la Supernova. The priors come &aet of observed parameters
like distribution of colours, distribution of objects aswunttion of Galactic latitude, frequencies
of different types of objects etc. The posteriors we are interéstedlude determining the type
of an object based on, say, its{) colour, Galactic latitude and proximity to another object

5.3 Light curve classification

When it comes to sparse godirregular light curves (LC) for any given object class #tricture
may not be obvious to the eye. However the salient featurebeaxploited by automated clas-
sification algorithms. In particular, by pooling LCs forfidirent objects belonging to a class we
can dfectively represent and encode this characteristic streigitobabilistically in the form of
an empirical probability distribution function (PDF) thzgin be used for subsequent classification
of a LC with even a few epochs. Moreover, this comparison @emade incrementally over time
as new observations become available, with our final classifin scores growing more confi-
dent with each additional set of observations. This forneslthsis for a real time classification
methodology. Since the observations come in the form of fiux given epoch, for each point
after the very first one we can form é&n, 6t) pair. We focus on modeling the joint distribution of
all such pairs of data points for a given LC. By virtue of beingrements, the empirical proba-
bility density functions of these pairs are invariant to@hbge magnitude and time shifts, which
is desirable in building a stable feature representatidoQy for classification algorithms to use.
Additionally, these densities conveniently allow uppenits to be encoded as well, e.g. forced
photometry magnitudes at a supernova location in imagesta&fore the star exploded. We cur-
rently use smoothed 2D histograms to model the distributfcglementary dm, dt) sets. This is

a computationally simple yeftlective way to implement a non-parametric density modelithat
flexible enough for object classes. Fig. 11 shows the joinh&bgrams for 3 classes of objects
and how a given candidate LC measurements fit these 3 clasffisfhistograms. In our prelim-
inary experimental evaluations with a small number of obfgasses (single outburst like SN,
periodic variable stars like RR Lyrae and Miras, as well aglsastic variables like blazars and
CVs) we have been able to show that the density models foe ttlasses are potentially a power-
ful method for object classification from spafiseegular time series as typified by observational
LC data.
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Figure 9. Examples of prior distributions of selected observables fiiecként types of astrophysical variable
sources compiled from the literature, and processed by us. Top:lbtsxgd flux variability amplitudes for
different types of objects (plotted along the X axis), sampled with time baselfiieday (left) and 2 days
(right). There are clear qualitativeftBrences in behavior amongdi@irent types of objects, and they depend
on time baseline. The bottom row shows the prior distributions for one phatitype of variable sources,
the RR Lyrae stars, with flux (magnitude) change after one day (leff)catour (right).

Currently we are using thelfn, dt) distributions for classification in a binary mode i.e. suc-
cessive two-class classifiers in a tree structure (seerhatght part of Fig. 11). SNe are first sep-
arated from non-SNe (the easiest bit, currently perfornaing§8%), then non-SNe are separated
into stochastic versus non-stochastic, and then each duotyer separated into more branches.
The most dfificult so far has been the CV-blazar node (based on justithedf) density i.e. with-
out bringing in the proximity to a radio source since we asoahterested in discovering blazars
that were not active when the archival radio surveys wereefloQurrently it is performing at
71%. We are also exploring Genetic Algorithms to determime aptimal dm and dt bins for
different classes. This will in turn advise follow-up observintgrvals for specific classes.
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Phenomenology

Incidental Colors Other observed
parameters parameters

Figure 10. A schematic diagram of the preliminary BN based on colours and conterfoamation as
described in the text. There are only 6 classes of variable objects cothidme of which is composite
of any objects not captured in the first 5, thus serving as a model foothgtical previously unknown
types. The ‘Phenomenology’ to ‘observed parameters’ connectimticate possible inputs from theory.
The actual BN implementation proposed here would have many moreeslag®bjects and many more
types of observable parameters. The basic classification nevertpetesdes another check for selecting
the best candidates for spectroscopy. We are working on combiningithignother Bayesian tool based
on lightcurve data for more accurate classification.

5.4 Follow-up

There are several reasons why follow-up observations fertthansient candidates are crucial.
(1) Since CRTS does not employ filters, no colour informaisoavailable for the transients when
they are first detected. Since colours are often necessdiigttnguish between fferent classes,
we need to obtain these from elsewhere. (2) Since the pumpiode CSS survey is looking
for asteroids, we cannot rely on it for repeat observatianspacific times that we may need
them. One of the expected outcomes of tthe,(dt) classification method (Sec. 5.3) is to inform
on when the next observation will be most discriminatoryddferent classes; we need to have
separate means for obtaining observations. (3) Dependirigeonature of the transient filirent
cadences are needed for follow-up (e.g. SNe need the faljpwe be denser near the peak)
and this can only be accomplished by having access to tglesawith follow-up capabilities.
(4) Most crucially though, since spectroscopic follow-the final arbiter, cannot be carried out
in every case, it is the early follow-up that can quickly detme if the transient candidate is
worthy of further observations (because it is an outliehelongs to a rarer class) or it is one of
the run-of-the-mill types and can be safely put on a backwur

With all these in mind we have been carrying out follow-upnfréhe P1.5m telescope in
g, 1,1, zfilters. This has allowed us to choose objects for spectpisdollow-up from telescopes
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such as the IUCAA Girawali Observatory (IGO) 2-m, Paloman%nd Keck 10-m. It has also
contributed to various priors that form inputs to the Bagadietworks and provided sample LCs
for the @m, dt) method. Fig. 12 shows a stellar locus with colours fromaasitransients from
P1.5m superimposed.

A variety of follow-up telescopes are needed (e.dgfedent apertures, instruments, wave-
length coverages etc.) for optimal follow-up of a range ahsients. We are working on an-
other Bayesian tool that can provide the best match for angikensient (based on whatever
early parameters are available) and one of several telesgrgirument pairs. For a given initial
probability distribution for diferent object types, the tool estimates best availabledapesand
instrument combination that will disambiguate betweendifkerent classes. In order to collect
data for the network (besides the reasons stated above)weekan obtaining follow-up epochs
from IGO 2-m, SMARTS 1.3-m, NMSU 1-m etc. We will soon havealitom SAAO 1.9-m as
well.

Gaia is slated to be launched in 2012. The magnitude disipitoéor the transients found by
Gaia is expected to be similar to that of CRTS. Keeping thatiimd a program is being initiated
to observe CRTS transients with various European telescopearious states of automation.
The open nature of CRTS makes it ideal for such a test-bedn@&tveork will be developed using
skyalert and VOEvents.

As needed, various other telescopes are invoked dependinjeonature of the transient
(e.g. the Expanded Very Large Array (EVLA), HST and the Gisldtrewave Radio Telescope
(GMRT) were used for following CSS100217 described in SgcFdr blazars follow-up obser-
vations are also obtained from the 40-m OVRO radio telesaofiee 150 + 1.5 GHz band.

5.5 Incorporating contextual information

Contextual information can be highly relevant to resolvoampeting interpretations: for ex-
ample, the light curve and observed properties of a trahsieght be consistent with it being
a cataclysmic variable star, a blazar, or a supernova. # #fubsequently known that there is
a galaxy in close proximity, the supernova interpretati@edmes much more plausible. Such
information, however, can be characterized by high unagegtand absence, and by a rich struc-
ture: if there were two galaxies nearby instead of one théaildeof galaxy type and structure and
native stellar populations become important, e.g. is pe tof supernova more consistent with
being in the extended halo of a large spiral galaxy or in clmeximity to a faint dwarf galaxy?
The ability to incorporate such contextual information iguantifiable fashion is highly desir-
able. We have been compiling priors for such information afi. whese then get incorporated
into the Bayesian network (of Sec. 5.2).

We are also investigating the use of crowdsourcing (‘citizeience’) as a means of har-
vesting the human pattern recognition skills, especiallyhie context of capturing the relevant
contextual information, and turning them into machinegassable algorithms. A methodology
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employing contextual knowledge forms a natural extensiothé logistic regression and classi-
fication methods mentioned above. This is going to be nepefwalarger future surveys when
we enter parameter spaces not explored before.

Ideally such knowledge can be expressed in a manipulabféofasvithin a sound logical
model, for example, it should be possible to state the rde‘thsupernova has a stellar progen-
itor and will be substantially brighter than it by severatlers of magnitude’ with some metric
of certainty and infer the probabilities of observed dataahimg it. Markov Logic Networks
(MLNSs) are such a probabilistic framework using declamtitatements (in the form of logical
formulae) as atoms associated with real-valued weighteesgng their strength. The higher the
weight, the greater theflierence in log probability between a world that satisfies thmfila and
one that does not, all other thing being equal. In this walgetomes possible to specify ‘soft’
rules that are likely to hold in the domain, but subject toaptions — contextual relationships that
are likely to hold such as supernovae may be associated withdy galaxy or objects closer to
the Galactic plane may be stars. A MLN defines a probabiliggritiution over possible worlds
with weights that can be learned generatively or discrirtivedy: it is a model for the conditional
distribution of the set of query atomégiven the set of evidence atorXs Inferencing consists
of finding the most probable state of the world given someeawi@ or computing the probability
that a formula holds given a MLN and set of constants, andiplyssther formulae as evidence.
Thus the likelihood of a transient being a supernova, dejpgnoh whether there was a nearby
galaxy, can be determined. The structure of a MLN — the sebwhifilae with their respective
weights — is also not static but can be revised or extendduveitv formulae either learned from
data or provided by third parties. In this way, new inforroatcan easily be incorporated. Con-
tinuous quantities, which form much of astronomical measwants, can also be easily handled
with a hybrid MLN.

These methods are in line with our philosophy that given tadesof the data sets in near fu-
ture there will not be enough humans to look at all possibhelmates and we will need programs
that combine the brute force of computers and the acumenroéha.

5.6 Combining the classifiers

A given classifier can not cater to all classes, nor to all $ypkinputs. That is the primary
reason why multiple types of classifiers have to be emplogetié complex task of classifying
transients in real time. Presence offdient bits of information trigger tfierent classifiers. In
some cases more than one classifier can be used for the sasiseokimputs. An essential task,
then, is to derive an optimal event classification, giverutsfrom a diverse set of classifiers such
as those described above. A fusion module is used to acceimtplis. However, the job of the
fusion module viz. combining ffierent classifiers with élierent number of output classes and in
presence of error-bars is a non-trivial task and still beimgked upon.



18 A. A. Mahabal et al.
5.7 Citizen science

We saw in Sec. 5.5 how citizen science related to contextfiatration is necessary for future
surveys. We describe here another type of citizen sciemsejrwolving regular monitoring of a
large number of galaxies for possible supernovae.

The main CRTS pipeline for transients is catalog-basednsieats can also be found using
the technique of image subtraction. This involves matchiegy observations with either an older
observation, or a deeper co-added image (Tomaney & Crofi§;1Brake et al. 1999). If the
images are properly matched, transients stand out as &pasisidual. This is also useful when
sources are blended and is used in supernova searches and/iéed fields routinely (Aldering
et al. 2002). When used with white light, thefdrence images tend to have bipolar residuals
thus leading to false detections as well as missed trassi&fe have been experimenting with
these to look for supernovae in galaxies using citizen seievhere a few amateur astronomers
regularly look at the galaxy images along with the residpa¢sented to them and by answering
a series of questions can determine if one of the candidstédsely to be a genuine supernova.
A few tens of supernovae have been found in this fashion (se®F2011) for an example, and
http://nesssi.cacr.caltech.edu/catalina/current.html for a list). Users are listed
as dficial discoverers of any supernovae that they report, pexvithat we can confirm that they
are real, not already known, and they have not previousiy bejgorted to us.

5.8 CRTS transient event publishing

To publish information on the transients in real time, CRTs&®31VOEvents, an international
XML standard. A VOEvent (Williams & Seaman 2007) packet eam$ the basic necessary
information about the event like the time, location, magadé, and so on in sections marked
“who, what, where, when, how, why” etc. These bits aréisient to initiate follow-up. The
follow-up can be active, i.e. new observations from a radledcope or a spectrum, or it can be
passive e.g. querying an archival dataset for a lightcuntkat location or a program that takes
in whatever bits of information are available and returngwlict, say, the class of the object with
associated probability values. The information returngddich of these follow-ups get annotated
to the main entry. These annotators quote the id of the @igwvent so that together they form a
cohesive portfolio for the transient.

The current follow-ups include observations from telegolike the P1.5m, SMARTS 1.3-
m, IGO 2-m, OVRO 40-m radio telescope (active) as well asadizts to and magnitudes of
nearest star, galaxy, radio source etc. from a variety ofesis; image cutouts from DPOSS, PQ,
CRTS; past CRTS lightcurve; basic classification; morermied classification based on some of
the follow-up information (passive).

Humans as well as computers and telescopes can subscribehotthe CRTS streams
(CRTS for CSS, CRTS2 for MLS and CRTS3 for SSS). That way aatechfollow-up can be
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Figure 11. Examples of §m, dt) Probability Distribution Functions. Smoothed 2D histograms are shown
for SN la (top-left), SN IIP (top-right) and RR Lyrae (bottom-left), wpinins of widthst = 1 day k-axis),
andém = 0.01 (y-axis). The superimposed diamonds are from a single LC (of SN IBfsHor the two

SN types form a better fit than that of RR Lyrae (and SN la is a better fit@hfl P). Various metrics on
probability distributions can be used to automatically quantify the degree eg§itriThe decision tree used
is shown at bottom-right.

done. In addition, one can set up arbitrarily complex filtensthese subscriptions so that one
will get notified only under specific circumstances. Somddssenarios include (a) the CRTS

stream produces a transient wighr > 3, or (b) there is a radio source withirf 3or (c) there is

a galaxy brighter than 18th mag within’L0This allows easy monitoring of specific classes of
objects. Diferent telescopes can thus be configured to receive onlyahsiémts they are capable

of following (based on, for example, mag, RA, Dec limits.).

All the information is also available in the form of rich wednges, to which expert comments
can be added. One of the future plans includes running sériaantvesting on the comments
as well as entire portfolios to glean higher level conneinot captured in the basic annotators
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Figure 12. Distribution of colours from P60 follow-up. The locus is typical non-vhhastars. All epochs
are plotted together. Whenftérent epochs for a single object are plotted and connected as a funttion
time, one can see the evolution of colours. As the data-set grows thiglpsovital information to build
priors for different classes.

and to interface with Virtual Observatory (VO) initiativeke VOSpace leading to a VO Transient
Facility. The list of transients and their portfolios canfbaend athttp: //www.skyalert.org/.

6. Concluding comments and future plans

Surveys like CRTS already illustrate the great scientifathmess and promise of time domain
astronomy, signaling even more exciting discoveries toeas we move from the current ter-
abyte regime to the petabyte regime of the near future. Theigg data rates require a strong
cyber-infrastructure to match. The time domain astronomgn astronomy of telescope and
computationgtata systems combined.

As we are moving ahead, there are several lessons learndid @ophasizing:

e The problem of a comprehensive follow-up of transient evénprobably the single great-
est bottleneck at this time. Most of the science comes fraenfaéHow-up observations,
especially spectroscopy, and we are already overwhelmeldagheer numbers of the po-
tentially interesting transients. With CRTS, we estiméta bnly~10% of the potentially
interesting events are followed up by anyone. This probldingrow by a several orders
of magnitude as we move into the LSST and SKA era.

e The available follow-up assets (e.g. large enough telescty spectroscopy) are unlikely
to keep pace with the event discovery rates. Which eventspgriwe many, are worthy
of the costly or resource-limited follow-up? An essentiahbling technology is thus the
ability to automatically classify and prioritize eventsissing none of the interesting ones,
and not saturating the system with false alarms. This is hifigon-trivial problem, as
described above, and yet, it is the key for dieetive, complete, and responsible scientific
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exploitation of the synoptic sky surveys, both current asthicoming. A better community
coordination of the follow-up forts is also important.

As for the CRTS survey itself, several ongoing and futuresttigyments may be of interest:

e We are currently producing a database of about half a billigint curves of all objects
detected in multiple epochs over the entire survey areas Wil be an unprecedented
resource for an archival exploration of the time domain. We starting to systemati-
cally characterize and analyze these light curves. Alsayeabave already demonstrated,
archival light curves are essential for the rapid charé&aéion of newly discovered events.

e Our co-added images reach fainter tlan 23 mag over most of the survey area, €3/4
of the entire sky. This will be another valuable asset fordbemunity.

e The current CRTS transient detection threshold is set eedilly high, in order to pick the
most dramatic, high-contrast events; and even so, we clamfaip only a small fraction of
them. We plan to lower this threshold, thus increasing thaiicant event discovery rate
by an order of magnitude. Combined with the archival lightvess, this will also broaden
the astrophysical variety of objects and phenomena studied

e We are also in the process of cross-correlating CRTS souwvibsthose found at other
wavelengths, e.g. in radio, or at high energies. This wiltaialy produce a number of
previously uncatalogued blazars and other AGN, and pagssithler types of objects as
well (Mahabal et al., in preparation).

In summary, CRTS is a multi-faceted community asset for@gpion of the time domain.
While the currently funded survey ends in late 2012, we hopeitlwill be continued as an even
more rewarding, largerfeort.
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