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Abstract. Alfvén waves are shown to be readily generated by mode con-
version from fast MHD waves reflecting off the steep atmospheric Alfvén
speed gradient in active region atmospheres. A simple analytic descrip-
tion of this process in terms of an ‘interaction integral’ indicates that it is
spread over many vertical scale heights, and indeed fills the whole active
region chromosphere for waves of moderate helioseismic degree `, even up
to ` = 1000 or more. This suggests that active region chromospheres are
Alfvén wave factories.
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1. Introduction

Alfvén (1942) first described the incompressive magnetohydrodynamic waves that
now bear his name, and postulated that they may have implications for sunspots. Cer-
tainly, Alfvén waves have long been detected in situ in the solar wind (Belcher &
Davis 1971), where they may take the form of outgoing large amplitude shear waves,
typically in fast streams (Velli & Pruneti 1997) and especially out of the ecliptic, or
drive interstellar turbulence by nonlinear interaction (Goldreich & Sridhar 1995).

The dominance of Alfvén waves travelling away from the Sun in high speed
streams naturally suggests a solar origin. In recent years transverse (to the magnetic
field) waves have been shown to be ubiquitous throughout the corona (De Pontieu et
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al. 2007; Tomczyk et al. 2007), though there is ongoing argument about whether they
are Alfvén waves or kink waves (Van Doorsselaere, Nakariakov & Verwichte 2008).
The two (related) wave types can apparently couple quite readily though in flux tubes
with transverse structure (Pascoe, Wright & De Moortel 2010, 2011), and may share a
common origin irrespective of which is actually responsible for the observed coronal
oscillations.

The natural instinct is to suspect direct side-to-side shaking by convection at the
photosphere as the excitation mechanism, but this may be shown to be inefficient
(Collins 1992; Parker 1991). Unresolved transition region nano-flare excitation has
also been suggested (Parker 1991; Velli & Pruneti 1997). The propagation of Alfvén
waves through the many scale heights of the photosphere-chromosphere and into the
corona and beyond has been widely modelled (e.g., Orlando et al. 1996; Cranmer, van
Ballegooijen & Edgar 2007) in many magnetic scenarios.

But what of other wave types? As pointed out by Velli & Pruneti (1997), the
slow wave is essentially acoustic in a low β plasma, and is subject to reflection if the
frequency is below the acoustic cutoff. It should be recalled though that inclined mag-
netic field reduces the effective cutoff frequency, the so-called ramp effect, to open
up ‘magnetoacoustic portals’ to the upper atmosphere (Bel & Leroy 1977; Schwartz,
Cally & Bel 1984; Jefferies et al. 2006). Sound waves are also subject to nonlin-
ear steepening and shocking as the density decreases with height through the chro-
mosphere. On the other hand, fast waves, which are predominantly magnetic in char-
acter, totally refract from the steep Alfvén speed gradient (Schunker & Cally 2006;
Cally 2007; Nutto, Steiner & Roth 2010). As explained by Schunker & Cally (2006),
both these fast and slow waves can be atmospheric extensions of the Sun’s internal p-
mode wave field that undergoes transmission and conversion near the Alfvén-acoustic
equipartition surface in regions of high magnetic field, sunspots in particular. Strong
surface field thereby opens an ‘escape hatch’ for the p-mode power normally trapped
beneath the photosphere.

However, this is not the full story. Although the fast wave reflects (roughly at
the height where ω = a k, with a the Alfvén speed and k the horizontal wavenum-
ber), it couples to the third MHD wave type, the Alfvén wave, provided that gravity
g, the magnetic field B, and the wavevector k are not coplanar (Cally & Goossens
2008). This scenario has been investigated recently by Cally & Hansen (2011) for the
simplest model possessing the necessary features: a zero β plasma with exponentially
increasing Alfvén speed, and uniform magnetic field oriented at angle θ to the direc-
tion of inhomogeneity. Because the interest is chiefly in the fast/Alfvén coupling, the
slow wave is frozen out with the β = 0 assumption.

In this paper, we briefly describe the results of this model, with particular attention
on where the coupling occurs (sketching a new analysis), and discuss implications for
Alfvén waves in active region atmospheres.
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2. Where does fast-to-Alfvén conversion occur?

Although fast waves are evanescent above their classical reflection points, their fall-off

with height in a roughly isothermal layer such as the solar chromosphere has exponen-
tial controlling factor exp(−k z). For helioseismic waves of moderate order ` ∼ 200
say (as an example) we have k ∼ 0.3 Mm−1, suggesting their influence will extend
throughout the chromosphere (roughly 2 Mm thick). Consequently, mode coupling
between the fast and Alfvén waves occurs precisely in this distended evanescent tail.
The main purpose if this paper is to justify this contention.

Mode conversion quite generally occurs where the two waves have nearly equal
phase velocities (and compatible polarizations), so that their wave trains fit together
like gear cogs. Mathematically, this is normally manifested as a stationary phase
integral. This is certainly the case for fast-slow conversion (Cally 2005). Turning
now to the fast-Alfvén case, and neglecting the sound speed c in comparison to the
Alfvén speed a, the fast wave has dispersion relation ω2 = a2|k|2 and the Alfvén wave
is described by ω2 = a2k2

‖ , where ω is frequency, k is the wavevector, and k‖ is the
component of k in the direction of the magnetic field. However, this WKB description,
although suggestive, may not be strictly valid in the fast wave’s evanescent tail where
the (imaginary) vertical wavenumber, kz ≈ i k, may be comparable to the inverse scale
height h−1. Indeed, kh � 1 is more relevant to p-mode driving, as discussed below.

A more exact treatment is possible. The governing equation describing fast-
Alfvén interaction is (

∂2
‖ +

ω2

a2

)
ξ = −∇p χ , (1)

where χ = ∇· ξ is the dilatation, ξ is the plasma displacement, ∂‖ = B̂·∇ is the field-
aligned derivative, and ∇p is the part of the gradient perpendicular to the magnetic
field. The displacement ξ = ξp is entirely transverse to the field lines. An exp[−iωt]
time dependence is assumed throughout. In this form we see that χ, representing the
(compressive) fast wave, acts as a source term for Alfvénic disturbances on field lines.
Only where the source is resonant with the Alfvén wave is there significant interaction.

Let us assume a steady ‘source’ χ = χ0, and define X+ and X− to be the solutions
of the homogeneous Alfvén equation

(
∂2
‖ + ω2/a2

)
X = 0 representing waves propa-

gating in the direction of increasing and decreasing Alfvén speed respectively. The
solution of the full driven equation is then

ξ = a(σ) X−(σ) + b(σ) X+(σ) (2)

where

a(σ) =

∫ ∞

σ

W−1X+(σ′)∇p χ0(σ′) dσ′ , b(σ) =

∫ σ

−∞
W−1X−(σ′)∇p χ0(σ′) dσ′ (3)

and σ is distance along a field line. The Wronskian of the two linearly independent
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Figure 1. Integrand appearing in by (left column) and by(σ) itself (right column) for k = 5, 1,
and 0.2 (top to bottom) for the case θ = 30◦, φ = arctan(ky/kx) = 40◦. The vertical line at σ = 0
indicates the classical position of fast wave reflection. The Alfvén conversion coefficient A of
each case is indicated in the left panels.

solutions, W = X+X′− − X′+X−, is necessarily constant for a second order equation
without first derivative.

To be specific, and in line with Cally & Hansen (2011), let a2 increase expo-
nentially with height z, with the density scale height arbitrarily set to unity.1 With

horizontal wavenumber k =
√

k2
x + k2

y , the uncoupled χ solution is

χ0 = J2k sec θ

(
2e−z/2k sec θ

)
ei(kx x+kyy) , (4)

in terms of the Bessel function of the first kind. This may be regarded as the first term
in a perturbation expansion; later terms will see the reflected fast wave component
reduced in magnitude due to Alfvén leakage. Then, with magnetic field oriented at
angle θ from the vertical and lying in the x-z plane,

X± = H(2,1)
0

(
2e−(σ/2) cos θk sec θ

)
(5)

1Cally & Hansen take this direction of inhomogeneity to be x, but in light of the context here, we label
it z.
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on the typical field line passing through x = 0, y = 0, z = 0, so that x = σ sin θ, y = 0,
and z = σ cos θ. H(1)

0 and H(2)
0 are the Hankel functions of order zero of the first and

second kind respectively. The Wronskian satisfies W−1 = i(π/2) sec θ. Without loss of
generality, the fast mode turning point has been placed at z = 0. We term a and b the
‘interaction integrals’. They represent the ‘turning on’ of the downgoing and upgoing
Alfvén waves respectively.

For simplicity, we concentrate on ξy (this is not quite the correct polarization of the
Alfvén wave, see Cally & Hansen (2011) for details, but it will suffice to illustrate the
nature of the interaction integrals). Both the integrand of by and by(σ) itself are plotted
in Fig. 1 for a representative case: θ = 30◦, φ = arctan(ky/kx) = 40◦. Remember that
the vertical density scale height h has been set to 1. With k = 5 (top row) the Alfvén
wave turns on sharply around the fast wave reflection point, indicating a very compact
fast-to-Alfven conversion region because the fast wave evanescent tail is very short.
For k = 1 (centre row) conversion is spread over several scale heights. Finally, for
k = 0.2 (bottom) the interaction of the two wave types is spread over 20 or more scale
heights, easily encompassing the whole chromosphere. To put this in context, for a
density scale height of 150 km dimensionless k = 5 corresponds to a dimensional
k = 1.33 Mm−1, or ` = 928. This is definitely in the high-` region. Conversion
of helioseismic waves of more moderate ` is even more spread in height. Note in
Fig. 1 how highly oscillatory behaviour of the integrand below the reflection point
z = 0 largely cancels, leaving the evanescent tail as the major source of Alfvén wave
excitation at small to moderate k.

Numerically, the fast-to-Alfvén conversion coefficients A (fraction of energy con-
verted to the outgoing Alfvén wave) for the three case used as illustration are: 0.376
for k = 5; 0.533 for k = 1, and 0.389 for k = 0.2. The reader is referred to Cally &
Hansen (2011) for a detailed survey of absorption coefficients as a function of k, θ,
and φ. Suffice it to say here that they can be quite substantial.

3. Discussion

Helioseismic waves emerging in strong surface magnetic field concentrations such as
sunspots are known to split into a slow wave (acoustic) and a fast wave (magnetic) near
the Alfvén acoustic equipartition level. The fast wave then reflects off the imposing
Alfvén speed gradient found in the low solar atmosphere due to the small density scale
height. Provided the magnetic field, gravity, and the wavevector are not co-planar,
there is then further conversion from the fast wave to an Alfvén wave. This occurs at
and beyond the fast wave reflection height, and is spread over many scale heights for
wavenumbers typical of local helioseismology.

In particular, we postulate that the whole active region chromosphere must be an
‘Alfvén wave excitation layer’. We might expect similar behaviour in smaller scale
flux concentrations such as network, though we have not modelled this (in such ele-
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ments, cross-field inhomogeneities may dominate though). Of course, there will be
reflection at the transition region. However, this generation of transverse waves be-
low the corona may be a potent source of transverse (Alfvén or kink) oscillations
observed throughout the solar corona. This suggestion is supported by the observed
excess power in coronal Alfvénic oscillations around 5 minutes (Tomczyk et al. 2007,
Fig. 2), indicating a link to p-modes (see also the early identification of 5 min peri-
odicities in OSO8 data throughout the chromosphere and into the transition region,
White & Athay 1979; Athay & White 1979).

Finally, it should be pointed out that conversion to the downgoing Alfvén wave
through the other interaction integral, a(σ), is favoured where θ > 90◦ (or equivalently
0 < θ < 90◦ but kx < 0). This is discussed in detail in Cally & Hansen (2011). Es-
sentially, if the fast wave draws roughly parallel to the magnetic field on its ‘upstroke’
(prior to reflection), it converts to an upgoing Alfvén wave, but if the directional corre-
spondence occurs on the downstroke, the downgoing Alfvén wave results. The latter
may be expected to have no implications for the corona (unless further reflection is im-
portant). Hence, magnetic field geometry can act as a filter on Alfvén waves produced
in the low solar atmosphere.
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