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Abstract. Over the course of roughly a decade, from the late 1950s through the early
1960s, Chandraskhar made fundamental contributions to basic plasma physics, and
the effect of magnetic fields on the dynamics of astrophysical plasmas. This paper
reviews recent progress and outstanding problems in Astrophysical magnetohydrody-
namics, the application of MHD to astrophysical systems, with particular emphasis on
the role of Chandra’s early contributions to the field. Specific topics discussed include
magnetic field amplification by dynamo processes inside stars, the magnetorotational
instability and angular momentum transport in accretion disks, MHD turbulence in the
interstellar medium of galaxies, and kinetic MHD effects in weakly collisional plas-
mas. Chandra’s contributions in all of these areas endure.
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1. Introduction

It was a great honour and privilege to speak at the Chandrasekhar Centennial Symposium on the
topic of ‘Astrophysical Magnetohydrodynamics’, especially since there were so many eminent
members of the audience whom I would have liked to hear speak on the same topic! The goals
of my talk were to provide a summary of recent progress in magnetohydrodynamics (MHD) as
applied to a wide variety of astrophysical systems, and to highlight Chandra’s early contributions
to these topics. The goals of this paper are the same.

Unfortunately, by the time I was a graduate student in the late 1980s, Chandra was no longer
working on plasma physics, and therefore I never had the opportunity to meet him personally.
However, he still had an enormous impact on me, as on most graduate students, through his books.
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In particular, his books on radiative transfer (Chandrasekhar 1950), hydrodynamic and hydro-
magnetic stability (Chandrasekhar 1961), and ellipsoidal figures of equilibrium (Chandrasekhar
1969), all still available as Dover reprints, are as relevant today as they were back then.

Throughout the 1950s and 1960s, Chandra wrote many papers on MHD and plasma physics,
following four general themes:

1. the statistical properties of turbulence,

2. problems in astrophysical MHD,

3. basic plasma physics, and

4. hydrodynamic and MHD instabilities.

Chandraskhar (1989a,b), volumes 3 and 4 of his selected papers, contain his most important work
in these areas. Rather than highlighting individual papers or results, instead I have organized this
paper around astrophysical objects of increasing scale. Thus, after a brief introduction to some
general concepts in MHD, I will discuss evidence for the importance of magnetic fields first
in stars, then in accretion disks, then in galaxies, and finally on the largest scale in clusters of
galaxies. Each topic will be organized into a separate section.

Finally, it is useful to highlight what Chandra himself wrote about astrophysical MHD back
in 1957: “It is clear we are very far from an adequate characterization of cosmic magnetic fields”
(Chandrasekhar 1957). Obviously we have come very far since 1957, but in some cases it is clear
we still have very far to go.

2. Some elementary MHD

Before discussing results, it is worthwhile to summarize some basic physics of MHD. In a highly
collisional plasma with perfect conductivity, the equations of motion are essentially the Euler
equations of gas dynamics, supplemented with Maxwell’s equations to describe the evolution of
the magnetic field (in particular, Faraday’s Law). The result, usually referred to as the equations
of ideal MHD, is

∂ρ

∂t
+ ∇·[ρv] = 0, (1)

∂ρv
∂t

+ ∇· [ρvv − BB + P∗
]

= 0, (2)

∂E
∂t

+ ∇ · [(E + P∗)v − B(B · v)
]

= 0, (3)

∂B
∂t
− ∇ × (v × B) = 0, (4)
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where P∗ is a diagonal tensor with components P∗ = P + B2/2 (with P the gas pressure), E is the
total energy density

E =
P

γ − 1
+

1
2
ρv2 +

B2

2
, (5)

and B2 = B · B. The other symbols have their usual meaning. These equations are written in
units such that the magnetic permeability µ = 1. An equation of state appropriate to an ideal gas,
P = (γ − 1)e (where γ is the ratio of specific heats, and e is the internal energy density), has been
assumed in writing equation 5. These equations are valid only for non-relativistic flows, and for
phenomena at frequencies much less than the plasma frequency. As we shall see in sect 6 there
are many interesting frontiers to explore as some of the assumptions underlying the equations of
ideal MHD are relaxed, for example in low collisionality plasmas.

Restricting ourselves to one dimensional flow for the moment, it is useful to rewrite the
equations of motion in a compact form

∂U
∂t

=
∂F
∂U

∂U
∂x

(6)

where the components of the vectors U and F are the conserved variables and their fluxes, respec-
tively, that is
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, (7)

Note that equation 6 defines a system of nonlinear hyperbolic partial differential equations (PDEs).
The mathematical properties of hyperbolic PDEs are well studied. In particular, the eigenvalues
of the Jacobian ∂F/∂U define the characteristic (wave) speeds in MHD.

In fact, probably the most important property of hyperbolic PDEs is that they admit wave-like
solutions. Much of the dynamics of magnetized plasmas can be interpreted using the properties
of linear and nonlinear wave solutions. The properties of linear waves can be studied using
the dispersion relation, derived by looking for solutions for small amplitude disturbances of the
form exp i(ωt + k · x), where ω is the frequency and k the wavevector, in a stationary, isotropic,
homogeneous medium. Inserting this form for the solution into the equations of motion, and
keeping only terms which are linear in the disturbance amplitude results in a system of linear
equations, which have solutions only if the frequency and wavenumber are related through the
following dispersion relation

[
ω2 − (k · VA)2

] [
ω4 − ω2k2

(
V2

A + C2
)

+ k2C2 (k · VA)2
]

= 0 (8)

where VA = B/
√

4πρ is the Alfvén velocity, and C2 = γP/ρ the adiabatic sound speed. The
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dispersion relation has three pairs of solutions, which represent right- and left-going waves of
three different families. (Note that MHD is immediately different from hydrodynamics, which
has only one wave family: sound waves). The MHD wave families are the Alfvén wave (an
incompressible transverse wave propagating at speed VA), and the fast and slow magnetosonic
waves (which are both compressible acoustic modes with phase velocity modified by the magnetic
pressure). To complicate matters even more, the phase velocity for each mode depends on the
angle between the wavevector and the magnetic field, as well as the strength of the magnetic
field as measured by the ratio VA/C. The angular dependence is most easily demonstrated using
Friedrichs diagrams, which plot the relative phase velocity of each mode versus the angle between
k and B in a polar diagram (see section 14.1 in Sturrock 1994 for an example). Such plots
clearly demonstrate important properties of MHD waves, for example for directions parallel to
the magnetic field, the Alfvén wave has the same phase velocity as either the fast or the slow
magnetosonic wave (which one depends on whether the Alfvén speed is faster or slower than the
sound speed). In this case, the modes are degenerate. Mathematically, this reflects the fact that
the equations of MHD are not strictly hyperbolic, since in some circumstances the eigenvalues
of the Jacobian are degenerate. This fact makes finding solutions to the equations of ideal MHD
even more complicated.

Another important property of MHD waves in comparison to hydrodynamics is that, because
they involve transverse motions, Alfvén waves can be polarized. The sum of two linear polar-
izations with different phase shifts can lead to circularly polarized Alfvén waves. This means in
MHD, all three components of velocity must be kept, even in one dimensional flows, in order to
represent all polarizations. Moreover, in non-ideal MHD the left- and right-circularly polarized
Alfvén waves can have different phase velocities, these are the whistler waves in the Hall MHD
regime (where ions and electrons can drift due to collisions with neutrals). Again, this new be-
havior is a direct consequence of the complexity of MHD waves, and it is fair to say that the rich
dynamics of MHD results in part from this complexity.

Finding analytic solutions to the equations of MHD, beyond those representing linear waves,
is very difficult. Usually, very restrictive assumptions are required, such as steady (so that ∂/∂t =

0), and/or one dimensional flow. Today, the most important tools for solving the MHD equations
are numerical methods. Grid based methods for MHD are now quite mature, and a variety of
public codes are available to study MHD flows in fully three-dimensions, including a rich set of
physics beyond ideal MHD. Most grid based methods for MHD adopt the same approach: the
conserved variables are discretized on a grid, with volume averaged values stored at cell centers.
In order to enforce the divergence-free constraint on the magnetic field, it is better to store area
averages of each component of the magnetic field at corresponding cell faces, and evolve these
components using electric fields at cell edges, using a technique called “constrained transport”.
Figure 1 shows the basic discretization of the variables.

One example of a publicly-available grid code for MHD is Athena (Stone et al. 2008), avail-
able at https://trac.princeton.edu/Athena. Athena implements a higher-order Godunov
scheme based on directionally unsplit integrators, piecewise-parabolic reconstruction, and con-
strained transport, with a variety of Riemann solvers available to compute the fluxes. With this
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Figure 1. Basic centering of variables for a grid-based numerical method for MHD using constrained
transport. Volume averages of conserved variables are stored at cell centers, while area averages of each
component of the magnetic field are stored at cell faces.

approach, mass, momentum, energy, and magnetic flux are all conserved to machine precision.
Of course, there are many other codes available which implement different algorithms than those
used in Athena, and this is a very good thing, because by comparing solutions to the same problem
generated by different algorithms, we can gauge whether those solutions are reliable. Throughout
the rest of this paper, I will discuss solutions to MHD problems generated by Athena and other
codes.

3. Solar magnetoconvection

The best evidence of the importance of magnetic fields to the dynamics of astrophysical plas-
mas comes from observations of the outer layers of the Sun. Both the presence of sunspots in
the photosphere, and structures such as filaments, prominences, and flares in the solar corona,
demonstrate the key role that magnetic fields play in shaping the dynamics. In fact, the very ex-
istence of the hot corona is now interpreted as due to heating by MHD effects. Beautiful images
and animations that show magnetic fields in action in the solar corona have been obtained by
recent spacecraft missions such as SOHO, TRACE, Yokoh, Hinode, and SDO.

It is thought that most of the magnetic activity of the Sun is driven by the combination of
rotation and turbulent flows in the convection zone. In fact, the properties of MHD turbulence
driven by convection was one of the problems that first interested Chandra in plasma physics (for
examples, see papers in Chandrasekhar 1989a).

Understanding the origin and evolution of the Sun’s magnetic field via a dynamo process has
been a challenging problem for many decades. In addition to generation of the dipole field due to
differential rotation, a process first proposed by Parker (1955), there are also small-scale multipole
fields thought to be generated by the convective turbulence that play a role in shaping sunspots
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and coronal activity. Both the processes that produce sunspots, and the large-scale magnetic field
of the Sun, are very active areas of research.

In the case of sunspots, direct numerical simulations of magnetoconvection in the outer lay-
ers, including realistic radiative transfer to capture the outer radiative zone, can now reproduce
details of observed sunspots, including the penumbral filaments; a beautiful example is given in
Rempel et al. (2009).

In the case of the solar dynamo, the dipole field is now thought to originate in the tachocline,
a region of strong shear between the radiative core (which is in solid body rotation, according
to results from helioseismology) and the outer convective zone (which is in differential rotation).
However, although the sophistication of modern global MHD simulations of magnetoconvection
in spherical and rotating stars is impressive, they still fail to explain both the origin of the differ-
ential rotation in the convective zone, and the origin of the cyclic dipole field. Solving the solar
dynamo problem is important, as we are unlikely to understand magnetic fields in other stars if
we cannot first understand the Sun.

4. The MRI in accretion disks

Moving beyond stars, the next set of astrophysical systems where magnetic fields have been iden-
tified as being important is accretion disks. Such disks are ubiquitous, occurring in protostellar
systems, close binaries undergoing mass transfer, and in active galactic nuclei.

The most basic property of an accretion disk is the angular momentum transport mechanism.
This mechanism controls the rate of accretion, which in turn controls the luminosity, variability,
and spectrum of the disk. Mass accretion in disks is analogous to nuclear fusion in stars: it is the
mechanism that powers the entire system.

It has been known for decades that kinetic viscosity in an astrophysical plasma is too small
to explain the angular momentum transport and mass accretion rate, so that some form of “anom-
alous” viscosity is required (Shakura & Sunyaev 1973). It has also been long suspected that the
transport was associated with turbulence in the disk, but disks with Keplerian rotation profiles
are linearly stable according to the Rayleigh criterion, that is, so long as the specific angular
momentum increases outwards. So the question becomes: what drives turbulence in disks?

The answer seems to be: magnetic fields. Remarkably, disks with Keplerian rotation pro-
files which contain weak magnetic fields (weak in the sense that the gas pressure is larger than
the magnetic pressure) are linearly unstable to the magnetorotational instability (MRI), as first
recognized by Balbus & Hawley (1991). The MRI can be identified by calculating the linear dis-
persion relation for MHD waves in a Keplerian shear flow. The simplest analysis which captures
the MRI assumes incompressible axisymmetric perturbations, a purely vertical magnetic field,
and ideal MHD (all of these assumptions have been relaxed in later analyses, e.g. see Balbus &
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Hawley 1999 for a review). The resulting dispersion relation is

ω4 − ω2
[
κ2 + 2 (k · VA)2

]
+ (k · VA)2

(
[k · VA]2 +

dΩ2

d ln r

)
= 0 (9)

where VA is the Alfvén speed, and

κ2 =
1

R3

d(R4Ω2)
dR

(10)

is the epicyclic frequency (R is the cylindrical radius). Note that the coefficient of the first and
second terms in equation (9) are positive and negative respectively, therefore solutions with ω2 <
0 (that is, instability) are possible if the third term is negative. This occurs when

(k · VA)2 < − dΩ2

d ln r
(11)

Physically, this states that if the rotation frequency in the disk is decreasing outwards (as is true in
Keplerian flows), then there are always sufficiently small wavenumbers that will be unstable. Note
that this is in direct contradiction to the Rayleigh criterion, which requires the angular momentum
(not frequency) decrease outward for instability. How small is “sufficiently small” for instability
depends on the magnetic field strength (VA). In practice, if the field is weak (VA < C), there
always are unstable modes with wavenumbers large enough that the corresponding wavelength is
less than the vertical scale height (thickness) of the disk.

In fact, studies of the MRI have a long and interesting history. The MRI was first identified
by Velikhov (1959) in a study motivated by a rotating plasma experiment. Chandrasekhar (1960)
made important contributions, showing the instability was present in a global analysis of magne-
tized Couette flow. Fricke (1969) found the instability in differentially rotating stars. However,
the importance of the MRI to accretion disks was not recognized by any of these authors, in fact
Safronov (1972) argued that the inclusion of finite resistivity and viscosity effects would make the
MRI unimportant in disks. A key element of confusion seems to be over the lack of recovery of
the Rayleigh criterion as the magnetic field strength is decreased to zero. The stability properties
of hydrodynamic flows (based on angular momentum gradients) and MHD flows (based on angu-
lar velocity gradients) are incompatible, a point discussed in detail by Balbus & Hawley (1991).
It was not until their paper that the important role that the MRI plays in disks was identified.

Over the past 20 years, there has been considerable effort to understand the nonlinear regime
and saturation of the MRI, mostly using computational methods. Figure 2 shows images from
typical simulations of the MRI in both global domains, in which the entire disk is evolved over a
wide range of radii, and local shearing box simulations, in which only a small radial extent of the
disk is evolved. The advantage of the shearing box is that by focusing all of the computational
resources on a small patch, much higher numerical resolution is possible.

Perhaps the most important result from local shearing box simulations is that in the nonlinear
regime, the MRI produces MHD turbulence which has both significant Maxwell and Reynolds
stresses that transport angular momentum outward. It is remarkable that the inclusion of a weak
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Figure 2. Images of the density from a global simulation of a MRI unstable disk (left), and of the density
and magnetic field vectors from a local shearing box simulation (right).

field qualitatively changes the stability properties of the flow, and results in outward transport
at a level required by observations. Numerical simulations of the MRI have also established that
turbulence amplifies the magnetic field, and drives an MHD dynamo, and that the power spectrum
of the turbulence is anisotropic, with most of the energy on the largest scales (Balbus 2003).

Still, many important questions remain. At the moment, it is not understood how the energy
liberated by accretion is dissipated by the turbulence: does most of the energy go into the ions
or electrons? It is not understood how MRI unstable disks drive powerful winds and outflows
as are observed in many astrophysical systems, and what are the relative contributions of the
MRI and winds to angular momentum transport. Finally, calculations which include radiation
have only begun to be explored; it is likely many important phenomena may be related to the
interaction of the radiation field with the flow field generated by the MRI. All of these questions
will undoubtedly be addressed by future efforts.

5. MHD turbulence in the ISM of galaxies

Moving to ever larger scales, the next system in which magnetic fields have been observed to be
important is the interstellar medium (ISM) of galaxies. The observation of polarized synchrotron
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emission from the ISM of the Milky Way and other galaxies, produced by relativistic electrons
spiraling around magnetic field lines, is direct proof of the presence of such fields. Moreover, the
observations allow the strength and even the direction of the field to be inferred. In most cases,
it is found the fields are in equipartition, with the magnetic energy density being about equal to
the thermal energy of the gas, and kinetic energy of relativistic particles. Moreover, observations
of the kinematics of the ISM in galaxies reveal it is highly turbulent. Thus, interpretation of the
dynamics of the ISM requires an understanding of highly compressible MHD turbulence.

In fact, the statistical properties of turbulence were of considerable interest to Chandra. It is
revealing to read what he wrote in his Henry Norris Russell Lecture:

We cannot construct a rational physical theory without an adequate base of physical knowl-
edge. It would therefore seem to me that we cannot expect to incorporate the concept of turbu-
lence in astrophysical theories in any essential manner without a basic physical theory of the
phenomenon of turbulence itself, (Chandrasekhar 1949).

Fortunately, the theory of energy cascades in strong MHD turbulence has progressed enor-
mously in the last few decades (e.g. Goldreich & Sridhar 1995), so that there now are theories of
the power spectrum and statistical properties of MHD turbulence that can be tested and compared
to observation. One method to investigate the properties of MHD turbulence is through direct
numerical simulation.

Figure 3 shows images from high resolution (10243) numerical simulations of highly com-
pressible MHD turbulence with both strong and weak magnetic fields, taken from Lemaster &
Stone (2009). The turbulence is driven with a forcing function whose spatial power spectrum is
highly peaked at a wavenumber corresponding to about 1/8 the size of the computational domain.
The energy input rate of the driving is held constant, and the turbulence is driven so that the Mach
number of RMS velocity fluctuations M = σV/C (where C is the sound speed) is about 7. The
magnetic field strength corresponds to a ratio of gas to magnetic pressure β = 8πP/B2 of 0.01 in
the strong field case, and one in the weak field case. This means the Alfvénic Mach number of
the turbulence is about one in the strong field case, and 7 in the weak field case.

It is quite clear from the images that in the weak field case, the density fluctuations are
isotropic, and the magnetic field is highly tangled. In contrast, in the strong field case the density
fluctuations are elongated along the field lines, and the field is more or less ordered. The suggests
that the power spectrum of the turbulence will be anisotropic. In fact, this is one of the most basic
predictions of the theory (Goldreich & Sridhar 1995).

In addition to investigating the spectrum of fluctuations, such simulations can be used to
measure properties such as the decay rate of the turbulence, and how it depends on the mag-
netic field strength. Early predictions suggested the decay rate of strongly magnetized turbulence
would be very low, since it would be dominated by incompressible Alfvén waves. In fact, the
simulations (Stone, Ostriker & Gammie 1998; MacLow 1999) found the decay rate of supersonic
MHD turbulence was very fast, with the decay time about equal to an eddy turn over time on
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Figure 3. Structure of the density (grayscale) and magnetic field (arrows) in driven supersonic MHD turbu-
lence for strong (top) and weak (bottom) fields.

the largest scales, regardless of the field strength. Most of the dissipation was found to occur
in shocks. Thus, while Alfvén waves are important to the energetics, the coupling of large am-
plitude nonlinear Alfvén waves to compressible modes, in particular slow magnetosonic waves,
cannot be ignored. This coupling pumps energy into the compressible modes, which then decay
in shocks. The result has important implications for the decay of supersonic turbulence in the
ISM of galaxies.

Finally, more direct comparison between the simulations and observations is possible using
properties such as the polarization angle of background star light. In many regions of the ISM,
spinning dust grains become aligned with their long axis perpendicular to the magnetic field.
When background stars are viewed through these aligned grains, their light is polarized, with
the strength and direction of the polarization vector related to the column density of gas, and the
magnetic field strength in the plane of the sky. Using numerical simulations of MHD turbulence, it
is possible to compute theoretical maps of the polarization vectors along different viewing angles
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Figure 4. Scatter in polarization angle in supersonic turbulence with a strong field (top) and weak field
(bottom). The grayscale shows the column density, and the line segments show the direction and amplitude
of the polarization vector.
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for background sources viewed through the simulation domain. Figure 4 shows an example
for two simulations, both using Mach 10 turbulence with strong (β = 0.01) and weak (β = 1)
magnetic fields.

It is clear from inspection that in the case of strong fields, the scatter in polarization angle is
small, while in the case of weak fields the scatter is large. In fact, this effect was predicted by
Chandrasekhar & Fermi (1953), who showed that the scatter in the polarization angle δφ should
be related to the plane-of-sky magnetic field strength Bp, gas density ρ, and line-of-sight velocity
dispersion δv through

Bp = 0.5
(4πρ)1/2δv

δφ
(12)

Equation 12 is now known as the “Chandrasekhar-Fermi” formula, and is now routinely used as
a technique to measure magnetic field strengths in the ISM.

6. Kinetic MHD effects in clusters of galaxies

Finally, we consider the effect of magnetic fields on the largest structures in the universe, clusters
of galaxies. Radio observations of Faraday rotation in background sources indicate that the x-ray
emitting plasma trapped in the gravitational potential of clusters is magnetized. Using the x-ray
spectra to determine the temperature and density of the plasma shows that the mean free path of
charged particles in the plasma is much smaller than the system size, but much larger than the
gyroradius, that is the plasma is in the kinetic MHD regime.

The most important property of weakly collisional plasmas in the kinetic MHD regime, in
comparison to highly collisional plasmas, is that the microscopic transport coefficients become
anisotropic. For example, if the electron mean free path is much larger than the electron gyrora-
dius, thermal conduction is primarily along magnetic field lines. Similarly, when the ion mean
free path is much larger than the ion gyroradius, kinematic viscosity is primarily along magnetic
field lines. The simplest description of the dynamics is therefore given by the equations of MHD
supplemented by anisotropic thermal conduction and viscous transport terms (Braginskii 1965).

Remarkably, the addition of anisotropic transport qualitatively changes the dynamics of the
plasma. For example, with anisotropic thermal conduction, the convective stability criterion no
longer depends on entropy, but only on the temperature gradient (if dT/dz < 0, the plasma is
unstable to convection; Balbus 2000). Convective instability in this regime has been termed the
magnetothermal instability (MTI). In fact, other instabilities have also been found in the kinetic
MHD regime that might be important in clusters (Quataert 2008) or in diffuse accretion flows
(Balbus 2000).

Figure 5, taken directly from a nonlinear simulation (Parrish & Stone 2007), demonstrates
the physics of the MTI. Consider a stratified atmosphere in a constant gravitational field. Arrange
the vertical profiles of the pressure and density so that the atmosphere is hotter at the bottom than
the top, and so that the entropy is constant or increasing upwards. In this case, the atmosphere
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Figure 5. Basic mechanism of the MTI. The structure of the perturbed field lines in a stratified atmosphere
are shown (which is hotter on the bottom than top), along with the direction of the heat flux Q induced along
field lines which results in amplification of the perturbations.

should be stable to convection by the Schwarzschild criterion. Now consider a weak, horizontal
magnetic field with anisotropic thermal conduction along field lines. Initially the field lines are
parallel to the isotherms, so there is no heat flux in the equilibrium state. Now consider the
evolution of vertical perturbations, as shown in the figure. The peaks of the perturbations are at a
slightly lower pressure than their equilibrium position, so they expand and cool. The valleys are at
a slightly higher pressure, and so contract and heat up. These lead to a temperature gradient, and
therefore a heat flux Q, along the field lines. The net result is to increase the entropy at the peaks
(making them more buoyant), and to decrease the entropy at the valleys (making them sink).
This increases the perturbation, tilts the field line more to the vertical, increases the temperature
gradient along the field line and therefore increases the heat flux; and this process runs away as
an instability.

The nonlinear regime of the MTI has now been quite well studied using numerical simula-
tions. With non-conducting boundaries at the top and bottom of the domain, the MTI saturates
when the temperature profile becomes isothermal. If the top and bottom boundaries are held at
fixed temperatures, then vigorous and sustained convection can be driven.

How does the MTI relate to galaxy clusters? Recent work shows that it can play an important
role in the temperature profiles of the x-ray emitting gas. When clusters form from gravitational
collapse of large-scale structure, the initial temperature profile is centrally peaked. This profile is
unstable to the MTI, and simulations of hydrostatic cores with weak magnetic fields show that the
MTI causes significant redistribution of the temperature profile of the cluster, along with signifi-
cant amplification of the magnetic field, in a Hubble time. More recently, the role that externally
driven turbulence plays in the plasma dynamics, along with the MTI and other instabilities in the
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kinetic regime, has been an area of active inquiry (for example, see Parrish, Quataert & Sharma
2009).

7. Summary

I have discussed a very wide range of astrophysical systems where magnetic fields modify or even
control the dynamics in order to demonstrate that MHD is now understood to be fundamental to
many basic problems in astrophysics. Perhaps the best example is provided by the problem
of angular momentum transport in accretion disks. For over thirty years, it was a struggle to
understand why such transport occurs. With the identification of the MRI, it became clear that
MHD is the key: weakly magnetized Keplerian shear flows are linearly unstable, and subsequent
computational studies have shown this instability saturates as MHD turbulence with a significant
Maxwell stress. In fact, both Velikhov (1959) and Chandrasekhar (1960) recognized the presence
of the instability, although neither realized its importance in accretion disks, perhaps because
such disks were not well recognized observationally at the time.

Many frontiers exist in astrophysical MHD, as Section 6 demonstrates. Motivated by the
properties of weakly collisional plasmas in the x-ray emitting gas in clusters of galaxies, anisotropic
thermal conduction was shown to qualitatively change the dynamics. In particular, it has been
found that the stability condition for convection is fundamentally altered when anisotropic con-
duction is important: stability depends only on the temperature gradient, while the entropy profile
is irrelevant. Undoubtedly, many more remarkable results remain to be discovered as ever more
realistic descriptions of astrophysical plasmas are adopted.

It is impossible to describe studies of astrophysical MHD without mentioning the important
role that numerical methods now play. In fact, computational methods are now the primary
tool for the investigation of nonlinear, time-dependent, and multidimensional solutions to the
equations of MHD. I wonder what Chandra would think of modern computational methods, and
their application to problems in astrophysics?

Finally, I hope this paper has demonstrated that Chandra’s contributions to plasma physics
and MHD endure. In particular, his work on the MRI was before its time.
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