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Abstract. Stellar dynamics occupied Chandrasekhar’s interest for a brief interlude
between his more prolonged studies of stellar structure and radiative transfer. This
paper traces the history of one of his ideas – namely, that the shape of the galactic
potential controls the orientation of the stellar velocity dispersion tensor. It has its
roots in papers by Eddington (1915) and Chandrasekhar (1939), and provoked a fasci-
nating dispute between these two great scientists – less well-known than their famous
controversy over the white dwarf stars. In modern language, Eddington claimed that
the integral curves of the eigenvectors of the velocity dispersion tensor provide a one-
dimensional foliation into mutually orthogonal surfaces. Chandrasekhar challenged
this, and explicitly constructed a counter-example. In fact, the work of neither of these
great scientists was without flaws, though further developments in stellar dynamics
were to ultimately draw more on Eddington’s insight than Chandrasekhar’s. We con-
clude with a description of modern attempts to measure the orientation of the velocity
dispersion tensor for populations in the Milky Way Galaxy, a subject that is coming
into its own with the dawning of the age of precision astrometry.
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ics – galaxies: general – Galaxy: stellar populations

1. Introduction

Chandrasekhar was perhaps the most influential theoretical astrophysicist of his time. This influ-
ence was particularly felt through an outstanding series of research monographs that continue to
be read today. In fact, most astronomers first encounter Chandrasekhar through the cheap Dover
reprints of books like Stellar Structure, Radiative Transfer, Hydrodynamic and Hydromagnetic
Stability and Ellipsoidal Figures of Equilibrium. These books bristle with formulae, equations,
numerical tables, graphs and historical notes, leavened with an immaculate prose style. They
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make exciting reading still today because they contain so much classic astrophysics so lucidly
explained.

In his Nobel lecture, Chandrasekhar (1984) wrote “There have been seven periods in my life.
They are briefly: 1) stellar structure, including the theory of white dwarfs (1929-1939); 2) stel-
lar dynamics, including the theory of Brownian motion (1938-1943); 3) the theory of radiative
transfer, the theory of the illumination and the polarization of sunlit sky (1943-1950); 4) hydro-
dynamic and hydromagnetic stability (1952-1961); 5) the equilibrium and stability of ellipsoidal
figures of equilibrium (1961-1968); 6) the general theory of relativity and relativistic astrophysics
(1962-71) and 7) the mathematical theory of black holes (1974-1983).”

So, Chandrasekhar’s work on stellar dynamics occupied a brief interlude of time. It began
in 1938 as a natural progression of his interests in the structure and evolution of stars. This was
at the height of his famous controversy with Eddington over the fate of the white dwarf stars.
It was over by 1943, when Chandrasekhar was commuting between his professorship at Yerkes
Observatory and the University of Chicago, and the Aberdeen Proving Ground in Maryland,
working on ballistics as part of the war effort. His research interests had moved towards radiative
transfer – the subject which Chandrasekhar himself has described as the one giving him most
satisfaction (Wali 1990).

Chandrasekhar’s (1943) book Principles of Stellar Dynamics is not as well-known or as mag-
isterial as some of his others. The work on dynamical friction and dynamics of star clusters has
proved to be of long-lasting value (see e.g., Heggie’s article in this issue). However, much of
the book reads oddly today. There are two long and, to modern eyes, puzzling chapters devoted
to problems in collisionless stellar dynamics, in particular, galaxy models consistent with the el-
lipsoidal hypothesis. This term is not much used nowadays, but was introduced by Eddington
(1915) as a generalisation of the triaxial Gaussian distribution of velocities used by Schwarz-
schild (1908) to describe the velocities of stars in the solar neighbourhood. This is the work we
shall examine here, and it is fair to say that this is not Chandrasekhar at his most memorable.
But, its connection with the earlier work of Eddington is fascinating, especially considering the
personal relations between these two great scientists. And even when Chandrasekhar was not at
his brilliant best, he could still find much of interest that others had overlooked.

So, we shall trace out the twists and turns that take us from the founding of stellar dynamics
by Jeans and Eddington at the beginning of the twentieth century to modern times. Chandrasekhar
himself contributed both fresh footpaths and blind alleys to this mazy route.

2. Eddington and the ellipsoidal hypothesis

Eddington’s (1915) paper that studies the ellipsoidal hypothesis is one of his great ones. We can
do no better than use Eddington’s own words:

“At any point of the system, the directions of the axes of the velocity ellipsoid determine three
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directions at right angles. The velocity ellipsoids thus define three orthogonal families of curves,
each curve being traced by moving step by step always in the direction of an axis of the velocity
ellipsoid at the point reached. These curves may be regarded as the intersections of a triply
orthogonal family of surfaces, which we shall call the principal velocity surfaces. The axes of the
velocity ellipsoid at any point are normals to the three principal velocity surfaces through any
point”.

In modern language, the theory of collisionless systems such as galaxies begins with the
Boltzmann equation:

∂F

∂t
+ v · ∂F

∂x
− ∂Φ

∂x
· ∂F

∂v
= 0, (1)

where F is the phase space distribution function and Φ is the gravitational potential. At every
point in the galaxy, we can define a velocity dispersion tensor

σij = 〈(vi − 〈vi〉)(vj − 〈vj〉), (2)

where angled brackets denote averages over the distribution function. The velocity dispersion
tensor σij is real and symmetric, and therefore by a well-known theorem in linear algebra has
mutually orthogonal eigenvectors. Eddington is asserting that the integral curves of the eigen-
vectors provide a one-dimensional foliation into surfaces, which he calls the principal velocity
surfaces. We shall return to the assumptions underlying this assertion shortly, as it is precisely
the point that troubled Chandrasekhar.

Eddington then shows via Lagrange’s equations that a steady state distribution of stars mov-
ing in a gravitational potential Φ necessarily generates principal velocity surfaces that are confo-
cal quadrics. Labelling the quadric surfaces by (λ, µ, ν), these are recognised as ellipsoidal coor-
dinates (e.g., Morse & Feshbach 1953). Eddington now proves two further theorems. First, sup-
pose that the distribution of velocities has exactly the Schwarzschild (1908) or triaxial Gaussian
form

F ∝ exp
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− v2

λ

2σ2
λ

− v2
µ

2σ2
µ

− v2
ν

2σ2
ν

)
, (3)

where (vλ, vµ, vν) are velocity components referred to the locally orthogonal axes and (σλ, σµ, σν)
are the semiaxes of the velocity ellipsoid. This is the ellipsoidal hypothesis. Eddington showed
that the only solutions for the principal velocity surfaces are spheres. However, the gravitational
potential need not be spherical, but can take the general form

Φ(r, θ, φ) = f(r) +
g(θ)
r2

+
h(φ)

r2 sin2 θ
, (4)

where f, g and h are arbitrary functions of the indicated arguments. These have sometimes been
called Eddington potentials in the astronomical literature.

Secondly, Eddington considered the more general case of a stellar population with an ar-
bitrary distribution of velocities. Under the assumption of the existence of principal velocity
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surfaces, he showed that the potential can take the general form in ellipsoidal coordinates

Φ(λ, µ, ν) =
f(λ)

(λ− µ)(λ− ν)
+

g(µ)
(µ− λ)(µ− ν)

+
h(ν)

(ν − µ)(ν − λ)
. (5)

Eddington does not consider the fully triaxial case in detail, but he does study the degenerations
of the ellipsoidal coordinates into spheroidal coordinates. Here, the stars have oblate or prolate
density distributions, the principal velocity surfaces are prolate or oblate spheroids and the veloc-
ity dispersion tensor is in general anisotropic. This was the first attempt to build galaxy models
using the separable potentials. Except in the spherical limit, Eddington did not write down the
form of the integrals of motion, leaving that task to his student, G.L. Clark (1937).

Although Eddington’s paper is not without its flaws, it turned out to be remarkably prescient,
anticipating developments over half a century later.

3. Chandrasekhar’s criticism

In retrospect, Chandrasekhar’s venture into stellar dynamics seems both natural and brave. It is
natural, as it is an obvious progression of his interests in stellar structure and evolution. It is
brave, as it strays onto territory that Eddington had already made his own. The discipline had
been founded by two people – Eddington in his book Stellar Movements and the Structure of the
Universe published in 1914, and Jeans in his 1917 Adams Prize essay, published somewhat later
in 1919 as Problems of Cosmogony and Stellar Dynamics. Eddington and Jeans had dominated
the subject over the 1920s, with fundamental contributions, including Jeans’ theorem, the equa-
tions of stellar hydrodynamics (sometimes called the Jeans’ equations), and Eddington’s inversion
formula for the distribution function of a spherical galaxy. Given Chandrasekhar’s worsening re-
lationship with Eddington over these years, his incursions into this field were almost inevitably
opening up a second front.

Chandrasekhar (1939, 1940) announced his entry into the field with two gigantic papers on
the ellipsoidal hypothesis (summarised in Chapters 3 and 4 of Principles of Stellar Dynamics
which themselves occupy over a hundred pages). Right away, he detected an error in Eddington’s
paper. Chandrasekhar’s criticism is worth quoting in full:

“The fallacy in Eddington’s argumentation is clear. It is true that we can regard the directions
of the principal axes of the velocity ellipsoid at any given point as being tangential to the three
curves which intersect orthogonally at the point considered. But it is not generally true that we
can regard these curves as the intersections of a triply orthogonal system of surfaces. Conse-
quently, the notion of principal velocity surfaces introduces severe restrictions on the problem,
which are wholly irrelevant and certainly unnecessary.”

Here, Chandrasekhar is completely correct. Eddington assumed that the eigenvectors of the
velocity dispersion tensor are the tangent vectors of a triply orthogonal system of surfaces. This
is a sufficient, but not a necessary, consequence of the orthogonality of the eigenvectors of the
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dispersion tensor. Eddington (1943) himself conceded as much in his review of Chandrasekhar’s
book. Writing in the journal Nature, he stated:

“Chandrasekhar rightly points out a fallacy in a theorem which I gave in 1915 and the correction
makes the conclusion less general than has hitherto been assumed. But he does not take the
opportunity of restating the position. Presumably it is still true that in a steady system with axial
symmetry, the velocity surfaces are confocal quadrics and transverse star streaming is necessarily
excluded, but there is no mention of this”.

Where did Chandrasekhar’s insight lead ? Chandrasekhar first somewhat generalised the
problem by asking for stellar dynamical models with distribution functions F of the form

F = F (Q), (6)

where Q is a quadratic function of the velocities. The coefficients are arbitrary functions of
position. More formally,

Q = v ·M(x) · v + N(x), (7)

where M and N are matrix and scalar functions of position. This is a generalized ellipsoidal
hypothesis, as Q and hence the phase space density F is constant on ellipsoids in velocity space.

Chandrasekhar proceeds by substituting his ansatz for the distribution function into the Boltz-
mann equation and separating term by term in the powers of velocity. He extracts a set of 20
partial differential equations, which he reduces to 6 integrability conditions. Note that Chan-
drasekhar does not impose the Poisson equation, as he is interested in finding the conditions that
a stellar population has a distribution function of ellipsoidal form in an externally imposed po-
tential. He reaches a very surprising conclusion that for stellar systems in a steady state, the
potential Φ must necessarily be characterised by helical symmetry. The case of axial symmetry
is included as a special case.

In other words, using cylindrical polar coordinates (R, φ, z), Chandrasekhar asserts that the
only solutions for the gravitational potential compatible with the generalised ellipsoidal hypoth-
esis are

Φ = f(R, z + αφ), (8)

where f is an arbitrary function of the indicated arguments and α is a constant (the reciprocal
of the pitch of the helix). The integrals of motion are the energy E and the generalisation of the
angular momentum component, namely

I = pφ − αpz (9)

where pφ and pz are the canonical momenta conjugate to φ and z. Chandrasekhar then notes that
such a potential can have bound orbits only if it is axisymmetric (α = 0) and so he reaches his
final conclusion. For stellar systems with differential motions, which are in steady states and of
finite spatial extent, the potential Φ must necessarily be characterized by axial symmetry.

This is a strong claim and we shall shortly see that, like Eddington’s work, it is not entirely
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correct. A surprising aspect is that, having realised that Eddington had introduced unnecessarily
restrictive assumptions into the problem, Chandrasekhar is not troubled by that fact that his more
general approach finds fewer solutions than Eddington – and indeed doesn’t find the solutions
with quadric principal velocity surfaces at all! Even more curiously, Chandrasekhar recognises
that the phase space distribution F is an integral of motion, quoting Whittaker’s (1936) book on
Analytical Dynamics as a reference. He therefore knows that his problem is exactly equivalent to
seeking all potentials that admit integrals of motion quadratic in the velocities. But, this problem
is also (partly) solved in Whittaker’s book, which provides a derivation of the separable potentials
in spheroidal coordinates, though not ellipsoidal, from the assumption of quadratic integrals.

A new result of Chandrasekhar is that he provides an explicit counter-example to Eddington’s
assumption. The helically symmetric systems indeed remain the only ones known to us which
do not possess mutually orthogonal principal velocity surfaces, but do satisfy the ellipsoidal hy-
pothesis. They are not of much astrophysical interest as they do not resemble galaxies, but they
remain of considerable intellectual interest.

Another insight of Chandrasekhar that has proved its worth is his repeated emphasis on the
principle of equivalence. By this, he means that if several different models can be found sharing
the same gravitational potential, then a more complex model that does not satisfy the ellipsoidal
hypothesis can be built by weighted linear superposition. This idea has often been exploited in
modern times to build realistic models by superpositions of analytic distribution functions (e.g.,
Fricke 1952; Dejonghe 1989; Emsellem, Dejonghe & Bacon 1999).

4. A modern approach

Let us now state and give the solution to Chandrasekhar’s problem anew from the point of view
of a modern dynamicist. Jeans’ theorem tells us that the distribution function of a collisionless
system depends only on the globally defined, isolating, integrals of motion. It therefore follows
that Q must be an integral of motion. Chandrasekhar’s problem is exactly equivalent to identify-
ing all those potentials that admit integrals of motion at most quadratic in the velocities. This is
a problem of widespread interest in both mathematics and physics, with an enormous literature
and history.

Integrals of motion that are linear in the velocities always result from geometric symmetries
of space. This is sometimes called Noether’s theorem (see e.g., Landau & Lifshitz 1976; Arnold
1978). It follows from the fact that the Lagrangian is invariant with respect to the corresponding
transformations, which are linear in the generators of the Euclidean group of symmetries. Exam-
ples include the invariance of the angular momentum component pφ in axisymmetric potentials
Φ(R, z), and the invariance of the linear momentum component pz in translationally invariant po-
tentials Φ(x, y). Chandrasekhar’s helical solution is the most general possible, with rotationally
and translationally invariant potentials given by the limits α → 0 and α →∞ respectively.

Integrals of motion that are quadratic in the velocities always result from separability of the
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Hamilton-Jacobi equation in some coordinate system. Many authors discovered some or all of the
potentials for which the Hamilton-Jacobi equation is separable in the confocal ellipsoidal coordi-
nates or their degenerations (e.g., Eddington 1915; Weinacht 1924; Whittaker 1936; Clark 1937;
Eisenhart 1948; Lynden-Bell 1962). These systems possess integrals of the motion quadratic in
the velocities by construction, as the Hamilton-Jacobi equation only has such terms in it! The
fact that separability of the Hamilton-Jacobi equation is both a necessary and sufficient condition
is a much more difficult result to prove. It was done for the first time in Makarov et al. (1967).

Although written from the viewpoint of particle physicists, Makarov et al. (1967) follow
essentially the same route as Chandrasekhar in Chapter 3 of Principles of Stellar Dynamics. That
is, they ask for the Poisson bracket of the integral of motion Q with the Hamiltonian H to vanish.
This is mathematically identical to requiring that Q satisfy the collisionless Boltzmann equation,
as Chandrasekhar did. The main difference is that Makarov et al. substantially simplify Q by
rotations and translations, before requiring that Q commute with the Hamiltonian H . This con-
siderably reduces the mathematical complexity of the problem, enabling them to find all possible
solutions (including the separable ones that Chandrasekhar had missed).

Before passing to later developments, it is worth remembering that Chandrasekhar and Ed-
dington had disagreed over the white dwarf stars and the endpoints of stellar evolution (see Vibert
Douglas 1956; Wali 1997; Chandrasekhar 1988 for various perspectives on this affair). In ret-
rospect, it is clear that Eddington behaved badly over the white dwarfs, not so much because he
was wrong – that can (and should) happen to every scientist! – but because he used his seniority
to stifle the work of a younger colleague.

Is it possible that Chandrasekhar, hurt by the reception of what would ultimately prove to be
a Nobel Prize winning achievement, was unable to appreciate fully the advantages in Eddington’s
approach in stellar dynamics? True, he had detected an error in Eddington’s (1915) paper, but
Eddington in the end saw closer to the truth of the matter in stellar dynamics. Eddington intro-
duced a hypothesis – the principal velocity surfaces – that was not strictly-speaking necessary
and would ultimately be discarded by later scientists. But, it proved to be a physically fruitful
hypothesis that led Eddington to an important class of models. Consequently, later developments
were to build more on Eddington’s work than Chandrasekhar’s, as we will now see.

5. Later developments

Further advances had to wait till the late fifties and early sixties, when the subject was revived
by Lynden-Bell (1962) with a particularly original investigation. Rather than starting from an
assumption that the integrals are quadratic in the velocities, Lynden-Bell permitted the integrals to
have any form (polynomial or transcendent). Instead, he assumed that the steady-state is one of a
set through which the system may secularly evolve whilst preserving the existence of the integrals
of motion. This led to the enumeration of all potentials with such isolating integrals – prominent
among them being the separable potentials in ellipsoidal coordinates and their degenerations. At
the time, the flattening of elliptical galaxies was believed to be caused primarily by rotation rather
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than velocity anisotropy. Hence, the application of the potentials to galaxies remained unexplored
in the West.

This was not true in the former Soviet Union, as a remarkable and sadly neglected paper by
Kuzmin (1956) – citing the influences of Eddington (1915) and Clark (1937) – had already used
the separable potentials in spheroidal coordinates to build an oblate, axisymmetric model of the
Galaxy. Kuzmin (1973) was also the first to write down the fully triaxial case, and study its orbital
structure, identifying the 4 characteristic classes of orbits: box, inner and outer long axis tubes
and short axis tubes (see e.g., Binney & Tremaine 1987). These models became well-known
in the West only after they had been re-discovered and extended by de Zeeuw (1985). Kuzmin
(1973) and de Zeeuw (1985) showed that an ellipsoidally stratified model with density

ρ =
ρ0

(1 + m2)2
, m2 =

x2

a2
+

y2

b2
+

z2

c2
(10)

possesses an exactly separable gravitational potential in confocal ellipsoidal coordinates. The eas-
iest way to demonstrate this is by making use of the methods and formulae in Chandrasekhar’s
(1968) finest and most beautiful book, Ellipsoidal Figures of Equilibrium. This is an important
result as it showed that realistic and phyically motivated models of elliptical galaxies could be
built from separable potentials. De Zeeuw also demonstrated a number of beautiful properties of
these models, including the classification of their orbits in integral and action space1. This led
to a flowering of interest in the models, as evidenced by the papers in IAU Symposium 127: The
Structure and Dynamics of Elliptical Galaxies (de Zeeuw 1987). This can be seen as the culmi-
nation of over seventy years of astronomical research on the subject, from Eddington, through
Chandrasekhar, Lynden-Bell and Kuzmin to modern times.

Even though their mass density falls off faster than the luminosity density of giant ellipticals,
and even though they are cored in the central parts rather than cusped, the separable models still
occupy a special place in modern galactic dynamics. This is because the orbital structure of the
models is generic for all flattened triaxial systems without figure rotation. Although the models
do not contain any irregular or chaotic orbits, for many applications in galactic dynamics, this
is unimportant, as the fraction of phase space occupied by truly irregular orbits is believed to be
small (Goodman & Schwarzschild 1981).

1By now, these potentials had come to be known as Stäckel potentials in the astronomical literature. This seems
unwarranted. First, it is poor practice in physics to associate a name with an equation if a perfectly adequate descriptive
term exists. On these grounds alone, the term ‘separable potential’ is preferable to ‘Stäckel potential’. And, second,
there is no reason to associate the name of Paul Stäckel with coordinate systems and potentials that he never wrote down!
Stäckel was a prominent differential geometer, latterly Professor of Mathematics at Heidelberg. In his Habilitationschrift
in 1891 at Halle, Stäckel wrote down the condition for the Hamilton-Jacobi equation to separate in a given coordinate
system on a general Riemannian manifold in the form of the vanishing of a determinant (which has reasonably enough
come to be called the Stäckel determinant). Stäckel did not derive the coordinate systems in Euclidean 3-space for which
his determinant vanishes, far less the form of the separable potentials in these coordinates. This work was left to Weinacht
(1924) and Eisenhart (1948). In fact, Stäckel’s result is limited, as it does not even provide a comprehensive test for
separability. Stäckel’s determinant for a separable system only vanishes if it is written down in the separable coordinate
system itself. The finding of a general criterion for identifying whether a potential is separable in some coordinate system
remains an outstanding research problem.
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Figure 1. The efficiency corrected velocity distributions in the (vr, vθ) and (vr, vφ) planes for the sample
of 1,600 subdwarfs with 1 kpc < |z| < 4 kpc. The dashed lines show the orientation of the tilts, which are
very close to spherical alignment. The apparent non-Gaussianity in the (vr, vφ) distribution is due to the
variation of the efficiency correction across this plane. [From Smith et al. (2009b)].

6. The alignment of the velocity dispersion tensor

Modern interest in the subject (e.g., Smith, Evans & An 2009a,b; Binney & McMillan 2011) has
been given additional impetus by large-scale photometric and spectroscopic surveys of hundreds
of thousands of stars in the Milky Way Galaxy itself. If proper motions are also available, then this
raises the possibility that all the components of the velocity dispersion tensor can be computed
directly from the data. There have been a number of interesting recent attempts to do this, both
for halo and disk populations. Although sample sizes are presently still small, and distance errors
a serious hazard, matters will substantially improve in the next few years.

For example, the Sloan Digital Sky Survey (SDSS, York et al. 2000) carried out repeated
photometric measurements in an equatorial stripe, known as Stripe 82, primarily with the aim
of supernova detection. Bramich et al. (2008) then provided a public archive of light-motion
curves in Stripe 82 complete down to magnitude 21.5 in the u, g, r and i photometric bands,
and to magnitude 20.5 in z. This reaches almost 2 magnitudes fainter than the SDSS/USNO-
B catalogue (Munn et al. 2004), making it the deepest large-area photometric and astrometric
catalogue available. Smith et al. (2009a,b) extracted a sample of ∼1,600 halo subdwarf stars via
a reduced proper motion diagram. Their radial velocities are calculated from the SDSS spectra
and their distances are estimated from photometric parallaxes, thus giving the full phase space
information. Although the sample is not kinematically unbiased, the detection efficiency can be
calculated and corrections made for any biases.

Figure 1 shows the velocity distributions of the SDSS Stripe 82 subdwarfs. These halo stars
lie at Galactocentric cylindrical polar radii between 7 and 10 kpc, and at depths of 4.5 kpc or
less below the Galactic plane. The good alignment of the velocity ellipsoid in spherical polars
is already apparent from the velocity distributions in the (vr, vθ ) and (vr, vφ) planes. Smith et
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al. find that the velocity dispersion tensor of the halo subdwarfs has semiaxes (σr, σφ, σθ) =
(143± 2, 82± 2, 77± 2) km s−1. The misalignment from the spherical polar coordinate surfaces
can then be described by the correlation coefficients and the tilt angles using

Corr[vi, vj ] =
σ2

ij

(σ2
iiσ

2
jj)1/2

, (11)

and

tan(2αij) =
2σ2

ij

σ2
ii − σ2

jj

. (12)

The tilt of the velocity ellipsoid with respect to the spherical polar coordinate system is found to
be consistent with zero for two of the three tilt angles, and very small for the third. Specifically,
Smith et al find:

Corr[vr, vθ] = 0.078±0.029, αrθ = 3.◦4±1.◦3,

Corr[vr, vφ] = −0.028±0.039, αrφ = −2.◦2±3.◦3, (13)
Corr[vφ, vθ] = −0.087±0.047, αφθ = −37.◦4±20.◦4.

In Eddington’s language, these stars have spherical principal velocity surfaces to an excellent
approximation. In a slight extension of the earlier results of Eddington (1915) and Chandrasekhar
(1939), Smith et al. (2009b) prove that: If the potential is nonsingular, it is a sufficient condition
for spherical symmetry that one of the non-degenerate eigenvectors of the velocity dispersion
tensor is aligned radially everywhere.

Of course, Smith et al. (2009b) did not demonstrate that the velocity dispersion tensor is
aligned everywhere in spherical polar coordinates. They showed that the alignment is very close
to spherical for halo subdwarfs at heliocentric distances of < 5 kpc along the∼ 250 deg2 covered
by SDSS Stripe 82. Nonetheless, they argued that this is still a striking and unexpected result over
a range of Galactic locations that provides a new line of attack on the awkward question of the
shape of the Milky Way’s dark halo. Binney & McMillan (2011) concur that local measurements
are not enough to constrain the shape of the Galaxy’s potential. Further work on the alignement
of the velocity ellipsoid of halo populations is highly desirable.

By contrast, the behaviour of the velocity ellipsoid of disk populations has been more widely
studied, not least because of its importance for calculations of the asymmetric drift and the Oort
Limit. Based on evidence from orbit integrations, Binney & Tremaine (1987) suggest that the tilt
may lie midway between spherical and cylindrical polar alignment. This is also the expectation
from models based on potentials separable in spheroidal coordinates (Statler 1989). There have
been three recent determinations directly from data by Siebert et al. (2008), Fuchs et al. (2009)
and Smith, Evans & Whiteoak (2011).

Siebert et al. (2008) extracted 763 red clump stars from the Radial Velocity Experiment
dataset (RAVE, Zwitter et al. 2008), spanning a distance interval from the Sun of 500 to 1500
pc. The tilt of the velocity ellipsoid of stars so close to the Galactic plane is affected both by the



Chandrasekhar and modern stellar dynamics 97

0.0 0.5 1.0 1.5 2.0
|z| (kpc)

−20

−15

−10

−5

0

α R
z 

(d
eg

re
es

)

0.0 0.5 1.0 1.5 2.0
|z| (kpc)

−500

−400

−300

−200

−100

0

σ R
z 

(k
m

2 /s
2 )

Figure 2. The variation of σRz and the corresponding angle αRz as a function of height from the plane.
The dashed red line is the assumed halo tilt (i.e. aligned in spherical polars). The blue and cyan points
correspond to disc stars with metallicities −0.8 ≤ [Fe/H] ≤ −0.5 and [Fe/H] ≥ −0.5, respectively.
[From Smith et al. (2011)].

structure of the Galactic disk and and the flattening of the dark halo. Siebert et al. find that the
velocity ellipsoid is tilted towards the Galactic plane with an inclination of 7.◦3 ± 1.◦8. This is
entirely consistent with alignment in spherical polar coordinates. Siebert et al. compare this value
to computed inclinations for two mass models of the Milky Way. The measurement is consistent
with a short scalelength of the stellar disc (≈ 2 kpc) if the dark halo is oblate or with a long
scalelength (≈ 3 kpc) if the dark halo is spherical or prolate.

Fuchs et al. (2009) used an enormous sample of ∼ 2 million M dwarfs derived from the
Sloan Digital Sky Survey Data Release 7 (Abazajian et al. 2009). Although the proper motions
and photometric distances of these stars are available, unfortunately the radial velocities are not.
Fuchs et al. estimated the radial velocities via the method of deprojection of proper motions.
They found an anomalously large tilt reaching an inclination of 20◦ at heights above the Galactic
plane of 800 pc, whereas spherical alignment would predict an inclination of ≈ 5◦. McMillan &
Binney (2009) have argued that this surprisingly large value may be spurious, a consequence of
correlations between velocities and positions of stars, which renders the method of deprojection
invalid.

Finally, Smith et al. (2011) again use the very deep light-motion catalogue for Stripe 82
(Bramich et al. 2008) to extract a sample of disk stars, complete with radial velocities from SDSS
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spectra and photometric metallicities. These stars are confined to a narrow range of cylindrical
polar radius between 7 ≤ R ≤ 9 kpc. However, there are enough stars to split the data into three
ranges in metallicity (−1.5 ≤ [Fe/H] ≤ −0.8,−0.8 ≤ [Fe/H] ≤ −0.5 and−0.5 ≤ [Fe/H]), and
for each metallicity bin to divide the data into four ranges in z (0 ≤ |z| ≤ 0.8, 0.8 ≤ |z| ≤ 1.1,
1.1 ≤ |z| ≤ 1.5 and 1.5 ≤ |z| ≤ 2.2 kpc). This gives around 500 to 800 stars per bin. The
variation with height and metallicity is shown in Figure 2. The dotted line corresponds to what
we would expect for a velocity ellipsoid aligned in spherical polar coordinates. The metal-rich
and medium-metallicity stars are arguably consistent with the dotted line, and hence consistent
with the result of Siebert et al. (2008). In general, the stars in the lowest metallicity bins (not
plotted in Figure 2) exhibit tilt angles which are larger than this, albeit with very large error bars.

Fortunately, the very-near future comprises the dawning of the Age of Precision Astrometry.
The GAIA satellite (e.g., Gilmore 2007) will provide tangential velocities for 44 million stars
and distances for 21 million stars with an accuracy better than 1 per cent. There is therefore a
realistic prospect that the behaviour of the velocity ellipsoid for both disk and halo populations
over a swathe of locations in the Milky Way Galaxy will be known shortly.
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