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Radiative transfer on X-Y geometry
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Abstract. A unique and non-negative solution of the radiative transfer equation in
two dimensional X-Y geometry in scattering and absorbing media is presented. This
solution facilitates asymmetric boundary conditions both in geometry and direction
from the two boundaries of geometrical configurations such as stellar atmospheres and
similar objects. Further, it allows inhomogeneities in the physical properties that occur
at any point in the medium.

Keywords : Radiative transfer in two dimensional geometry, boundary conditions.

1. Introduction

There are several methods of solving the equation of radiative transfer. However most of these
solutions are good in symmetric geometries which means symmetric boundary conditions. In
the astrophysical context, several good solutions are available in plane parallel and spherically
symmetric approximations of the equation of radiative transfer. In other fields such as meteo-
rology, chemical engineering, reactor physics, oceanography etc., solutions in three-dimensional
geometries are available (Oi & Liou, 1982; Stephens 1988; Evans, 1993, 1998). However these
solutions are based on certain numerical approximations which do not tell us the true charac-
teristics of the diffuse radiation field which arises out of the multiple scattering and which also
influences the ionisation properties and the velocity characteristics of the medium. These proce-
dures generate numerical artifacts which cannot be explained on the basis of the existing physical
properties of the medium. In addition to these problems, the boundary conditions are subject to
certain restrictions of homogeneous nature of the medium both in geometry and physical proper-
ties of the medium. The plane parallel and spherically symmetric solutions that are used in the
astrophysical context suffer from the symmetric boundary conditions (see Mihalas 1978; Peraiah
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2001; Nellison & Grant 1974; Mansike & Henning 1998; Men’shchikov & Henning 1997). In
reality we have geometric and physical dependent asymmetric boundary conditions. In addition
to these asymmetric boundary conditions we have to deal with the inhomogeneity of the physical
characteristics of the medium, such as density, chemical composition, temperature, ionisation of
several chemical species, velocities of gases etc. We need to develop a solution which can deal
with such complications mentioned above. In this paper, we try to obtain a solution of the equa-
tion of transfer equation in X − Y two dimensional geometry as a first attempt which can take
care of the physical and geometrical asymmetries and inhomogeneities mentioned above. The
equation of radiative transfer in X − Y − Z Cartesian coordinate system is written as

µ
∂uν
∂x

+ η
∂uν
∂y

+ ξ
∂uν
∂Z

= jν − κνuν (1)

where uν is the specific intensity of radiation with frequency ν, jν and κν are the emission and
absorption coefficients respectively. The quantities µ, η and ξ are the direction cosines of the ray
with respect to the coordinate axes X − Y − Z, (see Peraiah 2001, Chapter 2, Page 34), and are
related by the following relation

µ2 + η2 + ξ2 = 1. (2)

We have suppressed the time-dependent term in equation (1). Before we study the three-dimensional
equation, it is necessary to understand the problem in a two-dimensional geometry. The equation
(1) becomes in two-dimensional X − Y geometry as,

µ
∂uν
∂x

+ η
∂uν
∂y

= jν − κνuν. (3)

In the next section we briefly describe how the solution to the above equation is derived.

2. Method of obtaining solution in X-Y geometry

The equation of transfer is written in (X,Y), (X,−Y), (−X,−Y) and (−X,Y) quadrants. Let us di-
vide the space into windows as follows with −1 ≤ µ, η < 0 and 0 < µ, η ≤ 1. The geometrical and
directional discretisation will produce 8 windows and 16 equations of transfer. The 8 windows
are defined as follows:

w1 = window1 : (X,Y);−1 ≤ µ < 0 : 0 < µ ≤ 1 (4)

w2 = window2 : (X,Y);−1 ≤ η < 0 : 0 < η ≤ 1 (5)

w3 = window3 : (X,−Y);−1 ≤ µ < 0 : 0 < µ ≤ 1 (6)

w4 = window4 : (X,−Y);−1 ≤ η < 0 : 0 < η ≤ 1 (7)
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w5 = window5 : (−X,−Y);−1 ≤ µ < 0 : 0 < µ ≤ 1 (8)

w6 = window6 : (−X,−Y);−1 ≤ η < 0 : 0 < η ≤ 1 (9)

w7 = window7 : (−X,Y);−1 ≤ µ < 0 : 0 < µ ≤ 1 (10)

w8 = window8 : (−X,Y);−1 ≤ η < 0 : 0 < η ≤ 1 (11)

Correspondingly the equations of transfer in the 8 windows and half-space angles are written.
We shall define u+ and u− to represent u(+µ) and u(−µ) respectively in the µ range. Similarly
intensities are defined in the η range. We set σ, ω, B and P as the absorption coefficient, albedo
for single scattering, source function and phase function for isotropic scattering respectively. The
equations of transfer are written in the (X,Y) quadrant:

µ
∂u+(x, y)

∂x
+ η

∂u+(x, y)
∂y

+ σu+(x, y) = σ(1 − ω)B(x, y)

+
1
2
σω

∫ 1

−1
p(x, y; µ, µ′)u+(x, y; µ′)dµ′ (12)

for 0 < µ ≤ 1

µ
∂u−(x, y)

∂x
+ η

∂u−(x, y)
∂y

+ σu−(x, y) = σ(1 − ω)B(x, y)

+
1
2
σω

∫ 1

−1
p(x, y; µ,−µ′)u−(x, y; µ′)dµ′ (13)

for −1 ≤ µ < 0

η
∂u+(x, y)

∂x
− µ∂u+(x, y)

∂y
+ σu+(x, y) = σ(1 − ω)B(x, y)

+
1
2
σω

∫ 1

−1
p(x, y; η, η′)u+(x, y; η′)dη′ (14)

for 0 < η ≤ 1

−η∂u−(x, y)
∂x

+ µ
∂u−(x, y)

∂y
+ σu−(x, y) = σ(1 − ω)B(−x, y)

+
1
2
σω

∫ 1

−1
p(x, y;−η, η′)u−(x, y; η′)dη′ (15)

for −1 ≤ η < 0. We shall write equations in the (X,−Y) quadrant:

µ
∂u+(x,−y)

∂x
− η∂u+(x,−y)

∂y
+ σu+(x,−y) = σ(1 − ω)B(x,−y)

+
1
2
σω

∫ 1

−1
p(x,−y; µ, µ′)u+(x,−y; µ′)dµ′ (16)
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for 0 < µ ≤ 1.

µ
∂u−(x,−y)

∂x
+ η

∂u−(x,−y)
∂y

+ σu−(x,−y) = σ(1 − ω)B(x,−y)

+
1
2
σω

∫ 1

−1
p(x,−y; µ,−µ′)u−(x,−y; µ′)dµ′ (17)

for −1 ≤ µ < 0.

−η∂u+(x,−y)
∂x

− µ∂u+(x,−y)
∂y

+ σu+(x,−y) = σ(1 − ω)B(x,−y)

+
1
2
σω

∫ 1

−1
p(x,−y; η, η′)u+(x,−y; η′)dη′ (18)

for 0 < η ≤ 1.

η
∂u−(x,−y)

∂x
+ µ

∂u−(x,−y)
∂y

+ σu−(x,−y) = σ(1 − ω)B(−x,−y)

+
1
2
σω

∫ 1

−1
p(x,−y; η,−η′)u−(x,−y; η′)dη′ (19)

for −1 ≤ η < 0. We shall write equations in (−X,−Y) quadrant.

η
∂u+(−x,−y)

∂x
− µ∂u+(−x,−y)

∂y
+ σu+(−x,−y) = σ(1 − ω)B(−x,−y)

+
1
2
σω

∫ 1

−1
p(−x,−y; µ, µ′)u+(−x,−y; µ′)dµ′ (20)

for 0 < µ ≤ 1.

−η∂u−(−x,−y)
∂x

+ µ
∂u−(−x,−y)

∂y
+ σu−(−x,−y) = σ(1 − ω)B(−x,−y)

+
1
2
σω

∫ 1

−1
p(−x,−y; µ,−µ′)u−(x, y; µ′)dµ′ (21)

for −1 ≤ µ < 0.

µ
∂u+(−x,−y)

∂x
+ η

∂u+(−x,−y)
∂y

+ σu+(−x,−y) = σ(1 − ω)B(−x,−y)

+
1
2
σω

∫ 1

−1
p(−x,−y; η, η′)u+(−x,−y; η′)dη′ (22)

for 0 < η ≤ 1.

−µ∂u−(−x,−y)
∂x

− η∂u−(−x,−y)
∂y

+ σu−(−x,−y) = σ(1 − ω)B(−x,−y)

+
1
2
σω

∫ 1

−1
p(−x,−y; η,−η′)u−(−x,−y; η′)dη′ (23)
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for −1 ≤ η < 0. We shall write equations in (−X,Y) quadrant:

µ
∂u+(−x, y)

∂x
− η∂u+(−x, y)

∂y
+ σu+(−x, y) = σ(1 − ω)B(−x, y)

+
1
2
σω

∫ 1

−1
p(−x, y; µ, µ′)u+(−x, y; µ′)dµ′ (24)

for 0 < µ ≤ 1.

−µ∂u−(−x, y)
∂x

+ η
∂u−(−x, y)

∂y
+ σu−(−x, y) = σ(1 − ω)B(−x, y)

+
1
2
σω

∫ 1

−1
p(−x, y; µ,−µ′)u−(−x, y; µ′)dµ′ (25)

for −1 ≤ µ < 0.

−η∂u+(−x, y)
∂x

− µ∂u+(−x, y)
∂y

+ σu+(−x, y) = σ(1 − ω)B(−x, y)

+
1
2
σω

∫ 1

−1
p(−x, y; η, η′)u+(−x, y; η′)dη′ (26)

for 0 < η ≤ 1.

η
∂u−(−x, y)

∂x
+ µ

∂u−(−x, y)
∂y

+ σu−(−x, y) = σ(1 − ω)B(−x, y)

+
1
2
σω

∫ 1

−1
p(−x, y; η,−η′)u−(−x, y; η′)dη′ (27)

for −1 ≤ η < 0. We have,

B(x, y) ≥ 0 (28)

σ ≥ 0 (29)

0 ≤ ω ≤ 1. (30)

One should note that the above inequalities are also angle dependent and become relevant in an
expanding medium. As we deal with a static medium in the present situation we do not show
their angle dependency. Equations (12-27) are discretised in space and angle. We designate m
and n as the subscript indices for x and y coordinates. Let ∆x = xm+1− xm and ∆y = yn+1− yn. We
show how equation (12) is discretised and give the results for equations (13) to (27). Equation
(12) is discretised as follows:

µ∆y(u+,x
m+1,n − u+,x

m,n) + η∆x(u+,y
m,n+1 − u+,y

m,n) +
σ∆xy

4
(u+,x

m,n + u+,y
m,n + u+,x

m+1,n +

u+,y
m,n+1) = σ∆xy(1 − ω)Bm+ 1

2 ,n+ 1
2

+ σω
∆xy

4
[p++c(u+,x

m+1,n + u+,x
m,n)

+p+−c(u−,xm+1,n + u−,xm,n) + p++c(u+,y
m,n+1 + u+,y

m,n) + p+−c(u−,ym,n+1 + u−,ym,n)] (31)
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where c is the quadrature weight and

∆xy = ∆x∆y (32)

Equation (31) is rewritten as follows:

g1u+,x
m+1,n + g2u+,y

m,n+1 + g3u−,xm,n + g3u−,ym,n = g4

+g5u+,x
m,n + g6u+,y

m,n + g7u−,xm+1,n + g7u−,ym,n+1 (33)

The coefficient g’s are given in the Appendix. The equation (13) is similarly discretised and
written as follows:

g8u+,x
m+1,n + g8u+,y

m,n+1 + g9u−,xm,n + g10u−,ym,n = g11

+g12u+,x
m,n + g12u+,y

m,n + g13u−,xm+1,n + g14u−,ym,n+1 (34)

Combining equations (33) and (34) we get,
[

g1 g2
g8 g8

] [
u+,x

m+1,n
u+,y

m,n+1

]
+

[
g3 g3
g9 g10

] [
u−,xm,n
u−,ym,n

]
=

[
g4
g11

]
+

[
g5 g6
g12 g12

] [
u+,x

m,n
u+,y

m,n

]
+

[
g7 g7
g13 g14

] [
u−,xm+1,n
u−,ym,n+1

]
. (35)

Equations (14) to (27) are similarly written and are given below:
[

g15 g16
g22 g22

] [
u+,x

m+1,−n
u+,−y

m,−n−1

]
+

[
g17 g17
g23 g24

] [
u−,x−m,n
u−,−y

m,−n

]
=

[
g18
g25

]
+

[
g19 g20
g26 g26

] [
u+,x

m,−n
u+,−y

m,−n

]
+

[
g21 g21
g27 g28

] [
u−,xm+1,−n
u−,−y

m,−n−1

]
(36)

[
g29 g30
g36 g36

] [
u+,x

m+1,−n
u+,−y

m,−n−1

]
+

[
g31 g31
g37 g38

] [
u−,xm,−n
u−,−y

m,−n

]
=

[
g32
g39

]
+

[
g33 g34
g40 g40

] [
u+,x

m,−n
u+,−y

m,−n

]
+

[
g35 g35
g41 g42

] [
u−,xm+1,−n
u−,−y

m,−n−1

]
(37)

[
g43 g44
g50 g50

] [
u+,−x
−m−1,−n

u+,−y
−m,−n−1

]
+

[
g45 g45
g51 g52

] [
u−,−x
−m,−n

u−,−y
−m,−n

]
=

[
g46
g53

]
+

[
g47 g48
g54 g54

] [
u+,−x
−m,−n

u+,−y
−m,−n

]
+

[
g49 g49
g55 g56

] [
u−,−x
−m−1,−n

u−,−y
−m,−n−1

]
(38)

[
g57 g58
g64 g64

] [
u+,−x
−m−1,−n

u+,−y
−m,−n−1

]
+

[
g59 g59
g65 g66

] [
u−,−x
−m,−n

u−,−y
−m,−n

]
=

[
g60
g67

]
+

[
g61 g62
g68 g68

] [
u+,−x
−m,−n

u+,−y
−m,−n

]
+

[
g63 g63
g69 g70

] [
u−,−x
−m−1,−n

u−,−y
−m,−n−1

]
(39)
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[
g71 g72
g78 g78

] [
u+,−x
−m−1,n

u+,y
−m,n+1

]
+

[
g73 g73
g79 g80

] [
u−,−x
−m,n

u−,y−m,n

]
=

[
g74
g81

]
+

[
g75 g76
g82 g82

] [
u+,−x
−m,n

u+,y
−m,n

]
+

[
g77 g77
g83 g84

] [
u−,−x
−m−1,n

u−,y−m,n+1

]
(40)

[
g85 g86
g92 g92

] [
u+,−x
−m−1,n

u+,y
−m,n+1

]
+

[
g87 g87
g93 g94

] [
u−,−x
−m,n

u−,y−m,n

]
=

[
g88
g95

]
+

[
g89 g90
g96 g96

] [
u+,−x
−m,n

u+,y
−m,n

]
+

[
g91 g91
g97 g98

] [
u−,−x
−m−1,n

u−,y−m,n+1

]
(41)

[
g99 g100
g106 g106

] [
u+,x

m+1,n
u+,y

m,n+1

]
+

[
g101 g101
g107 g108

] [
u−,xm,n
u−,ym,n

]
=

[
g102
g109

]
+

[
g103 g104
g110 g110

] [
u+,x

m,n
u+,y

m,n

]
+

[
g105 g105
g111 g112

] [
u−,xm+1,n
u−,ym,n+1

]
(42)

where ± signs refer to ±µ or ±η and x, y refer to the X and Y axes. Further, ±m and ±n refer to
±xm or ±xn respectively. The emergent and incident intensities are written following equations
(35) to (42) in all the 4 quadrants. These are written as follows:

(u+,x
m,n, u

+,x
m,−n, u

+,−y
m,−n, u

+,−y
−m,−n, u

+,−x
−m,−n, u

+,−x
−m,n, u

+,y
−m,n, u

+,y
m,n) = U+

1 (say) (43)

and

(u−,xm+1,n, u
−,x
m+1,−n, u

−,−y
m,−n−1, u

−,−y
−m,−n−1, u

−,−x
−m−1,−n, u

−,−x
−m−1,n, u

−,y
−m,n+1, u

−,y
m,n+1)

= U−2 (say). (44)

The incident intensities are given as,

(u−,xm,n, u
−,x
m,−n, u

−,−y
m,−n, u

−,−y
−m,−n, u

−,−x
−m,−n, u

−,−x
−m,n, u

−,y
−m,n, u

−,y
m,n) = U−1 (say) (45)

and

(u+,x
m+1,n, u

+,x
m+1,−n, u

+,−y
m,−n−1, u

+,−y
−m,−n−1, u

+,−x
−m−1,−n, u

+,−x
−m−1,n, u

+,y
−m,n+1, u

+,y
m,n+1)

= U+
2 (say) (46)

Equations (35) to (42) together with equations (43) to (46) can be written as,

K
[

U+
1

U−2

]
=

[
Σ+

Σ−

]
+ L

[
U−1
U+

2

]
. (47)

Thus we can write the emergent intensity vectors in terms of incident intensity vectors and source
vectors as,

[
U+

1
U−2

]
= K−1

[
Σ+

Σ−

]
+ K−1L

[
U−1
U+

2

]
. (48)
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The source vectors are
Σ+ = (g109, g102, g4, g11, g98, g25, g32, g39) (49)

Σ− = (g46, g53, g60, g67, g74, g81, g88, g95). (50)

The K and L matrices are given below. We shall set,

ρ =
∆x∆yσω

4
(51)

ρ1 = ρp++c, ρ2 = ρp+−c, ρ3 = ρp−+c, ρ4 = ρp−−c. (52)

In the case of isotropic scattering we have,

ρ1 = ρ2 = ρ3 = ρ4 (53)
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Figure 1. Outward (left) and inward (right) intensities.
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Figure 2. Outward (left) and inward (right) intensities.
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The matrix K is given below:



g5 + ρ1 2ρ1 2ρ1 2ρ1 2ρ1 2ρ1 2ρ1 g6 + ρ1 g7 + ρ2

2ρ2 2ρ2 2ρ2 2ρ2 2ρ2 2ρ2 g7 + ρ2

g12 + ρ3 2ρ3 2ρ3 2ρ3 2ρ3 2ρ3 2ρ3 g12 + ρ3 g13 + ρ4

2ρ4 2ρ4 2ρ4 2ρ4 2ρ4 2ρ4 g14 + ρ4

2ρ1 g19 + ρ1 g20 + ρ1 2ρ1 2ρ1 2ρ1 2ρ1 2ρ1 2ρ2

g21 + ρ2 g21 + ρ2 2ρ2 2ρ2 2ρ2 2ρ2 2ρ2

2ρ3 g26 + ρ3 g26 + ρ3 2ρ3 2ρ3 2ρ3 2ρ3 2ρ3 2ρ4

g27 + ρ4 g28 + ρ4 2ρ4 2ρ4 2ρ4 2ρ4 2ρ4

2ρ1 g33 + ρ1 g34 + ρ1 2ρ1 2ρ1 2ρ1 2ρ1 2ρ1 2ρ2

g35 + ρ2 g35 + ρ2 2ρ2 2ρ2 2ρ2 2ρ2 2ρ2

2ρ3 g40 + ρ3 g40 + ρ3 2ρ3 2ρ3 2ρ3 2ρ3 2ρ3 2ρ4

g41 + ρ4 g42 + ρ4 2ρ4 2ρ4 2ρ4 2ρ4 2ρ4

2ρ1 2ρ1 2ρ1 g48 + ρ1 g47 + ρ1 2ρ1 2ρ1 2ρ1 2ρ2

2ρ2 2ρ2 g49 + ρ2 g49 + ρ2 2ρ2 2ρ2 2ρ2

2ρ3 2ρ3 2ρ3 g54 + ρ3 g54 + ρ3 2ρ3 2ρ3 2ρ3 2ρ4

2ρ4 2ρ4 g56 + ρ4 g55 + ρ4 2ρ4 2ρ4 2ρ4

2ρ1 2ρ1 2ρ1 g62 + ρ1 g61 + ρ1 2ρ1 2ρ1 2ρ1 2ρ2

2ρ2 2ρ2 g63 + ρ2 g63 + ρ2 2ρ2 2ρ2 2ρ2

2ρ3 2ρ3 2ρ3 g68 + ρ3 g68 + ρ3 2ρ3 2ρ3 2ρ3 2ρ4

2ρ4 2ρ4 g70 + ρ4 g69 + ρ4 2ρ4 2ρ4 2ρ4

2ρ1 2ρ1 2ρ1 2ρ1 2ρ1 g75 + ρ1 g76 + ρ1 2ρ1 2ρ1

2ρ2 2ρ2 2ρ2 2ρ2 g77 + ρ2 g77 + ρ2 2ρ2

2ρ3 2ρ3 2ρ3 2ρ3 2ρ3 g82 + ρ3 g82 + ρ3 2ρ3 2ρ4

2ρ4 2ρ4 2ρ4 2ρ4 g83 + ρ4 g84 + ρ4 2ρ4

2ρ1 2ρ1 2ρ1 2ρ1 2ρ1 g89 + ρ1 g90 + ρ1 2ρ1 2ρ1

2ρ2 2ρ2 2ρ2 2ρ2 g91 + ρ2 g91 + ρ2 2ρ2

2ρ3 2ρ3 2ρ3 2ρ3 2ρ3 g96 + ρ3 g96 + ρ3 2ρ3 2ρ4

2ρ4 2ρ4 2ρ4 2ρ4 g97 + ρ4 g96 + ρ4 2ρ4

g103 + ρ1 2ρ1 2ρ1 2ρ1 2ρ1 2ρ1 2ρ1 g104 + ρ1 g105 + ρ2

2ρ2 2ρ2 2ρ2 2ρ2 2ρ2 2ρ2 g105 + ρ2

g110 + ρ3 2ρ3 2ρ3 2ρ3 2ρ3 2ρ3 2ρ3 g110 + ρ3 g111 + ρ4

2ρ4 2ρ4 2ρ4 2ρ4 2ρ4 2ρ4 g112 + ρ4


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The matrix L is given below:



g3 − ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 g3 − ρ2 g1 − ρ1

−2ρ1 −2ρ1 −2ρ1 −2ρ1 −2ρ1 −2ρ1 g2 − ρ1

g9 − ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 g10 − ρ4 g8 − ρ3

−2ρ3 −2ρ3 −2ρ3 −2ρ3 −2ρ3 −2ρ3 g8 − ρ3

−2ρ2 g17 − ρ2 g17 − ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ1

g15 − ρ1 g16 − ρ1 −2ρ1 −2ρ1 −2ρ1 −2ρ1 −2ρ1

−2ρ4 g23 − ρ4 g24 − ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ3

g22 − ρ3 g22 − ρ3 −2ρ3 −2ρ3 −2ρ3 −2ρ3 −2ρ3

−2ρ2 g31 − ρ2 g31 − ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ1

g29 − ρ1 g30 − ρ1 −2ρ1 −2ρ1 −2ρ1 −2ρ1 −2ρ1

−2ρ4 g37 − ρ4 g38 − ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ3

g36 − ρ36 g22 − ρ3 −2ρ3 −2ρ3 −2ρ3 −2ρ3 −2ρ3

−2ρ2 −2ρ2 −2ρ2 g45 − ρ2 g45 − ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ1

−2ρ1 −2ρ1 g44 − ρ1 g43 − ρ1 −2ρ1 −2ρ1 −2ρ1

−2ρ4 −2ρ4 −2ρ4 g52 − ρ4 g51 − ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ3

−2ρ3 −2ρ3 g50 − ρ3 g50 − ρ3 −2ρ3 −2ρ3 −2ρ3

−2ρ2 −2ρ2 −2ρ2 g59 − ρ2 g59 − ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ1

−2ρ1 −2ρ1 g58 − ρ1 g57 − ρ1 −2ρ1 −2ρ1 −2ρ1

−2ρ4 −2ρ4 −2ρ4 g66 − ρ4 g65 − ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ3

−2ρ3 −2ρ3 g64 − ρ3 g64 − ρ3 −2ρ3 −2ρ3 −2ρ3

−2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 g73 − ρ2 g73 − ρ2 −2ρ2 −2ρ1

−2ρ1 −2ρ1 g − 2ρ1 −2ρ1 g71 − ρ1 g72 − ρ1 −2ρ1

−2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 g79 − ρ4 g80 − ρ4 −2ρ4 −2ρ3

−2ρ3 −2ρ3 g − 2ρ3 −2ρ3 g78 − ρ3 g78 − ρ3 −2ρ3

−2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 g87 − ρ2 g87 − ρ2 −2ρ2 −2ρ1

−2ρ1 −2ρ1 g − 2ρ1 −2ρ1 g85 − ρ1 g86 − ρ1 −2ρ1

−2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 g93 − ρ4 g94 − ρ4 −2ρ4 −2ρ3

−2ρ3 −2ρ3 g − 2ρ3 −2ρ3 g92 − ρ3 g92 − ρ3 −2ρ3

g101 − ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 −2ρ2 g101 − ρ2 g99 − ρ1

−2ρ1 −2ρ1 −2ρ1 −2ρ1 −2ρ1 −2ρ1 g100 − ρ1

g107 − ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 −2ρ4 g108 − ρ4 g106 − ρ3

−2ρ3 −2ρ3 −2ρ3 −2ρ3 −2ρ3 −2ρ3 g106 − ρ3



We have two types of optical depths: one in the X-direction and the other in the Y-direction.
These are defined as follows:

∆τx = σ∆x (54)

∆τy = σ∆y. (55)
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We will further define,

∆τ = σ∆l (56)

where ∆l is a typical length segment which can be determined from the non-negativity conditions
of the reflection and transmission operators across a ’cell’ (see Peraiah, 2001). We shall relate
∆x, ∆y and ∆l by the following relation:

f1∆x = f2∆y = f ∆l (57)

Now ∆τx and ∆τy become in terms of f’s and ∆τ,

∆τx =
f
f1

∆τ (58)

and

∆τy =
f
f2

∆τ. (59)

The factors f’s represent the extent of inhomogeneity in the X and Y directions. When the medium
is homogeneous we have,

f1 = f2 = f (60)

If we set,

α =
f
f1
, β =

f
f2
, γ =

f 2

f1 f2
= αβ (61)

then,

µ∆y = µ
f
f2

∆l = µβ∆l (62)

and

η∆x = η
f
f1

∆l = ηα∆l. (63)

Further we write,

s =
σω∆x∆y

4
=
σωγ∆l2

4
=
γω∆τ∆l

4
(64)

In the light of the above equations (57) to (66) the quantity ug1 can be written as,

ug1 = u(µ∆y + s − tp1) =

u∆l
(
βµ +

γ∆τ

4
− ωpc

γ∆τ

4

)
. (65)
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Thus all intensities are multiplied by ∆l. The matrices K and L are 16x16xm sized matrices,
where m stands for the number of angles µ and η. To reduce the computational labour we need
to use a small number of angles at specific points (such as Gauss-Legendre quadrature points on
(0,1)) in the range of 0 < µ, η ≤ 1. However we may need the intensities at a given point of the
angles µ or η. There are two ways of obtaining the intensities at a given angle:(1) interpolation
for the intermediate intensities: this process will not give accurate picture of the result and (2)
calculation of the mean intensity using the existing intensities and employ the newly calculated
mean intensity to estimate the intensities at any given angle by using the formal solution of the
transfer equation, which would give a continuous curve for intensities vs angle of emergence.
The mean intensity is calculated by the following relation,

J =
1
2

∫ +1

−1
u(µ)dµ (66)

from which we obtain the formal solution through the following relations:

u(0, µ) = u(τ, µ)e−
τ
µ +

∫ τ

0
J(t, µ)e−

τ
µ

dt
µ

(67)

for the outward intensities and,

u(τ,−µ) = u(0, µ)e−
τ
µ +

∫ τ

0
J(t,−µ)e−

τ−t
µ

dt
µ

(68)

for the inward intensities. This completes the solution. Equations (12) to (27) are discretised on
the X-Y coordinate system. For example, equation (12) is discretised and the resultant equation is
given in equation (31). Equation (13) is similarly discretised and these two discretised equations
are given in equation (35). Similarly equations (14) to (27) are discretised and written in equations
(36) to (42). The incident intensity vectors u−1 and u+

2 and the emergent intensity vectors u+
1 and

u−2 are given in equations (43) to (46). The emergent intensity vectors are given in equation
(48) in terms of the incident intensity vectors and the source vectors. This is in the form of
the ‘Interaction Principle’ (see Peraiah 2001). The quantity K−1L gives us the reflection and
transmission operators in a given ‘cell’ which is denied as that space in which the reflection and
transmission operators are non-negative and each element of these operators are less than unity
and generate a continuous solution of the transfer equation. The medium is divided into several
cells or shells each of which satisfy the conditions of continuity and stability of the solution.
Once the operators of reflection and transmission are calculated for all the shells we can calculate
the diffuse radiation field or the internal radiation field by using the scheme given in Peraiah
(2001). This scheme gives us the incident and emergent intensities at the boundaries of all the
shells. As we have used a small number of angles (to reduce the computational time), the number
of intensities are not enough to get a good result of the solution. Therefore we use equation
(68) to calculate the mean intensities which in turn are used to calculate the outward and inward
intensities at the boundary of each shell through equations (69) and (70). Now, we can use any
number of µ′s or η′s so that we can obtain variation of the outward and inward directed intensities
against the angles of emergence required to produce smooth variation. These are given in Figs
(1) to (9).
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3. Results and discussion

Equations (69) and (70) enable us to calculate the outward and inward intensities at angles in the
range of 0 < µ, η ≤ 1 from all the 8 windows defined in (4) to (11). We used 4 Gaussian points
for the angle quadrature on 0 < µ ≤ 1. These are: µ1 = 0.06943, µ2 = 0.33001, µ3 = 0.66999,
µ4 = 0.93057, and the corresponding weights are c1 = 0.17393, c2 = 0.32607, c3 = c2 and
c4 = c1. We have used the same roots and weights for η. The medium is divided into several
shells. We assume that no radiation is incident on the outer boundary and radiation is incident
from the inner boundary (similar to that of a stellar atmosphere). These are given by

U+
2((w1 − w8), τ = 0) = 0. (69)
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Figure 3. Outward (left) and inward (right) intensities.

This implies that no radiation is incident at τ = 0 (that is from outside the atmosphere)
through any of the windows w1-w8. We give the incident radiation from the inside of the medium
as follows,

U−1((w1 − w2), τ = τmax) = 1. (70)

This implies that through all the windows (and for all µ′s and η′s) we give incident radiation
of unit intensity (one should note here that the incident radiation can be given individually in each
window). In this case we give no internal sources that is, we set,

ω = 1 (71)

B+, B− = 0 (72)



128 A. Peraiah

cos(angle of emergence)

o
u
tw

a
rd

 e
m

e
rg

e
n
t 
in

te
n
s
it
ie

s

(a)

cos(angle of emergence)

in
w

a
rd

 e
m

e
rg

e
n
t 
in

te
n
s
it
ie

s

(b)

Figure 4. Outward (left) and inward (right) intensities.
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Figure 5. Outward (left) and inward (right) intensities.

which is a purely scattering case. In this case, we test the solution for radiant flux conservation.
We have considered media in which both scattering and absorption operate. Here, we set,

U−1((w1 − w2), τ = τmax) = 0 (73)

ω < 1 (74)

B+, B− > 0 (75)
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Figure 6. Outward (left) and inward (right) intensities.
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Figure 7. outward (left) and inward (right) intensities

In the calculations we have considered ω = 1 and 0.5 and correspondingly we have set B=0 and
1. We have divided the medium into 50 shells each with an optical depth of 0.02 so that the total
optical depth will be 1. As we noticed earlier there are two types of optical depths one along the
X-axis and the other along the Y-axis (see equations (57) to (62)) ∆τx and ∆τy respectively and
are connected through ∆τ and the factors f , f1 and f2. These are the free parameters which will
decide the characteristics of the medium. We have set f1 = 1, 5 and f2 = 1, 5 to represent different
optical depths along the two axes. We have assumed isotropic phase function and therefore the
elements of p are all unity each. For different values of f’s the outward and the inward intensities
are described in Figs (1) to (9). All the figures contain the data, that are used to calculate the
results, in the figures themselves. Each figure contains two parts: (1) part (a) and (2) part (b)
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Figure 8. outward (left) and inward (right) intensities

showing the outward and the inward directed intensities respectively. The numbers on the curves
represent the window number. In Fig. (1), we have used f = f1 = f2 = 1 which implies that
the optical depths along X- and Y- directions are same and incident radiation is given uniformly
through all the windows (see equation (72)). The outward emergent radiation and the inward
directed emergent radiation are shown in this figure. Same amount of radiation emerges through
windows 1 and 5. Similarly radiation emerges out through windows2 and 6, windows 3 and 7
and windows 4 and 8. This can be understood from the symmetrical nature in equations (12) to
(27). If the boundary conditions are symmetric, then it is enough if we solve half the number
of equations. However, when the boundary conditions are asymmetric we need to solve fully all
the equations, the solutions of which are not symmetric, which we shall see below. Maximum
amount of radiation seems to emerge out of the w2 (window 2) and w6 while least is emerging
out of the w1 and w5 in the case of outward emerging radiation. In the inward emerging situation
maximum amount of radiation emerges out of w3 and w7 while w4 and w8 releases minimum
amount of radiation. It is evident that although symmetric boundary conditions are given in all
the windows the emergent radiation is asymmetric. This is clearly the effect of the geometry. In
Fig. 2, we changed the optical depths in the two directions that is, we set f = 1, f1 = 5 and
f2 = 1. From equations (58) and (59) the optical depth along the Y-direction is 1

5 of that along
X-direction. The results are totally different from those given in Fig. 1. Maximum amount of
radiation emerges through windows 4 and 8 both in the outward and inward directions while very
little radiation emerges through windows 1 and 5 in both cases. Windows (2, 6) and (3, 7) release
intermediate amount of radiation. However one should realise that the symmetry in the windows
is maintained. In Fig. 3, we have presented results for f = f1 = 1 and f2 = 5. This implies that
the optical depth along x-direction is 1

2 of that along y-direction. The results are different from
those given in Figs 1 and 2. More radiation emerges out of windows (2, 6) and (3, 7) while other
windows emit comparatively less amount of radiation. In Fig. 4 we give the incident radiation
through only one window that is w3 with f = f1 = f2 = 1. Most of the radiation emerges out of
window 3 both in the outward as well as inward directions. More radiation gets back scattered
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into window 3. Very little amount of radiation emerges out of other windows. It is clear that
although we have given incident radiation through a single window, part of this radiation gets
scattered through other windows as well. Figs 5 and 6 give similar results for different values of
f’s (shown in the figures). We introduced absorption together with scattering in the atmosphere
and the results are presented in Figs 7, 8 and 9. We set ω = 0.5 and B = 1. We have not given
incident radiation on either side of the atmosphere. Figure 7 gives the results for f = f1 = f2 = 1
which implies that the optical depths along X- and Y- axes are same. There is more outward
directed radiation through w4 and w8 than through other windows. In the case of inward directed
radiation more of it is coming out of windows 1 and 5 than through the other windows. Figure 8
gives the results for the data f=1, f1 = 5 and f2 = 1. Substantial amount of radiation is emitted
in the outward direction through windows 4, 8, 3 and 7. Other windows do not contribute much
to the outward directed radiation. A similar behavior is observed in the case of inward directed
radiation. Fig. 9 gives the results for f = f1 = 1 and f 2 = 5. In the case of outward directed
radiation windows 1,5 and 2,6 emit substantial amount of radiation while other windows do not
emit as much. Same pattern of emission of inward radiation is noted.
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Figure 9. Outward (left) and inward (right) intensities.

4. Conclusion

The solution of transfer equation in two dimensional geometry is developed. The solution has
been applied to media with different physical conditions. We have demonstrated that asymmetric
boundary conditions can be used quite conveniently in an inhomogeneous atmosphere.
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5. Appendix

We set,

s =
∆x∆yσ

4
, t = sω, v = ∆x∆yσ(1 − ω),

p1 = p++c, p2 = p+−c, p3 = p−+c, p4 = p−−c (76)

where p’s are the phase functions and p++ means P(+µ,+µ′). Similarly other p’s are defined. We
give g’s below:

g1 = µ∆y + s − tp1, g2 = η∆x + s − tp1, g3 = −tp2, g4 = vB+

m+ 1
2 ,n+ 1

2
(77)

g5 = µ∆y − s + tp1, g6 = η∆x − s + tp1, g7 = −g3, g8 = −tp3 (78)

g9 = µ∆y + s − tp4, g10 = −η∆x + s − tp4, g11 = vB−
m+ 1

2 ,n+ 1
2
, g12 = −g8 (79)

g13 = µ∆y − s + tp4, g14 = −η∆x − s + tp4, g15 = g1, g16 = −η∆x + s − tp1 (80)

g17 = g3, g18 = vB+

m+ 1
2 ,−n− 1

2
, g19 = g5, g20 = −η∆x − s + tp1 (81)

g21 = −g3, g22 = g8, g23 = g9, g24 = η∆x + s − tp4, g25 = vB−
m+ 1

2 ,−n− 1
2

(82)

g26 = −g8, g27 = g13, g28 = η∆x − s + tp4, g29 = −η∆y + s − tp1 (83)

g30 = −µ∆x + s − tp1, g31 = g3, g32 = vB+

m+ 1
2 ,−n− 1

2
, g33 = −η∆y − s + tp1 (84)

g34 = −µ∆x − s + tp1, g35 = −g3, g36 = g8, g37 = −η∆y + s − tp4 (85)

g38 = µ∆x + s − tp4, g39 = g25, g40 = −g8g41 = −η∆y − s + tp4 (86)

g42 = µ∆x − s + tp4, g43 = η∆y + s − tp1, g44 = g30, g45 = g3 (87)

g46 = vB+

−m− 1
2 ,−n− 1

2
, g47 = η∆y − s + tp1, g48 = g34, g49 = −g3, g50 = g8 (88)

g51 = η∆y + s − tp4, g52 = µ∆x + s − tp4, g53 = vB−−m− 1
2 ,−n− 1

2
, g54 = −g8 (89)

g55 = η∆y − s + tp4, g56 = µ∆x − s + tp4, g57 = g1, g58 = g2, g59 = g3 (90)

g60 = g46, g61 = g5, g62 = g6, g63 = −g3, g64 = g8, g65 = g9 (91)

g66 = −η∆x + s − tp4 (92)

g67 = g53, g68 = −g8, g69 = g13, g70 = −η∆x − s + tp4, g71 = g1, g72 = g16 (93)

g73 = g3, g74 = vB+

−m− 1
2 ,n+ 1

2
, g75 = µ∆y − s + tp1, g76 = g20, g77 = −g3 (94)

g78 = g8, g79 = g9, g80 = η∆x − s − tp4, g81 = vB−−m− 1
2 ,n+ 1

2
, g82 = −g8 (95)

g83 = g13, g84 = η∆x − s + tp4, g85 = g29, g86 = g30, g87 = g3, g88 = g74 (96)

g89 = g33, g90 = g34, g91 = −g3, g92 = g8, g93 = g37, g94 = g38, g95 = g81 (97)

g96 = −g8, g97 = g41, g98 = g42, g99 = g43, g100 = g30, g101 = g3, g102 = g4 (98)

g103 = η∆y − s + tp1, g104 = g34, g105 = −g3, g106 = g8, g107 = g51 (99)

g108 = g38, g109 = g11, g110 = −g8, g111 = g55, g112 = g42 (100)
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