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1Department of Physics, Bahir Dar University, P.O.Box 79, Bahir Dar, Ethiopia
2Department of Physical Sciences, Oulu University, P.O.Box 90014, Oulu, Finland

Abstract. Radars have been used extensively for ionospheric studies. In
an ionospheric radar measurement one usually implements different types of
codes and the choice largely depends on the geophysical phenomenon under
investigation. As a result many kinds of coding and decoding methods have
been used including binary phase codes. In ionospheric physics the perfor-
mance of binary phase codes are usually investigated in terms of spatial and
temporal resolution. This is done usually by employing a matched filter, which
creates unwanted side lobes at the output of the receiver. These side lobes can
be eliminated by using a mismatched filter. But there is an associated loss
in signal-to-noise ratio (SNR). In this paper we have presented long optimal
binary phase code-mismatched filter pairs that may be used in several applica-
tions including ionospheric radar measurements. This was done by investigating
1.04× 109 number of binary phase codes.
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1. Introduction

Binary phase codes have been often used in radar systems. The most widely known binary
phase codes are Barker codes (Barker 1953). Other families of binary phase codes, which
are called alternating codes, have been also discovered (Lehtinen & Häggström 1987).
These and other kinds of codes are used to vary the carrier signals from a radar transmitter
in accordance with their waveforms. In the radar receiver information about the target
is obtained by employing a suitable filter. In binary phase-coded radar measurements a
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matched filter is usually used to obtain a very high range resolution without decreasing
the average transmitted power. However, matched filtering of a binary phase code gives
unwanted sidelobes at the filter output. The amplitude of the sidelobes depends on the
phase patterns of the binary phase code. Significant research effort has been done to
search binary phase patterns that give smallest possible sidelobes. Most often peak-
to-sidelobe ratio (PSR), integrated sidelobe ratio (ISR) and merit factor (F) are used
as criteria to measure the performance of binary phase radar waveforms. For example,
Barker codes have relatively high PSR. Other kind of binary phases with improved PSR
have been found, including the 28-element code by Turyn (1976) and the 40-element code
by Lindner (1975).

Although binary phase codes with maximum PSR can be satisfactory for some ap-
plications, in some cases removing the sidelobes reveals new and important information.
Key et al. (1959) showed that weighting networks to be placed after the standard matched
filter can be designed which reduces the sidelobes to an arbitrary low level. For any peri-
odic digital signal with linearly independent cyclical shifts, Ipatov (1977) has shown that
a filter can be constructed that suppresses to a zero level all the sidelobes. However, the
filter has associated SNR losses when compared to the matched filter. Ipatov (1980)
carried out a computer search for a binary periodic signal-filter pair with minimum pos-
sible SNR losses. The search includes all binary codes of length up to 30 elements. A
different approach of eliminating the sidelobes in periodical binary phase codes by using
mismatched filter have been published by Rohling and Plagg (1989). Exhaustive search
for optimal aperiodic binary phase codes and mismatched filter pairs up to length of 25
has been carried out by Lehtinen et al. (2004). The benefits of eliminating sidelobes have
also been demonstrated in practice by analyzing ionospheric radar measurements.

In this paper we extend the investigation of binary phase codes in Lehtinen et al.
(2004) up to a length of 30. A computer search is carried out to find aperiodic binary phase
code-mismatched filter pairs with minimum possible SNR losses. We first formulate
mismatched filtering operations and then describe our criterion for selecting an optimal
binary phase code-mismatched filter pair. Finally, we present the search results.

2. Mismatched filtering of aperiodic binary phase codes

Since our investigations are concerned with a digital system, it is convenient to formulate
the problem in a discrete form. This means that we follow the formulation in Damtie
et al. (2007). We shall represent the phase pattern of a binary phase code by ε(n) and
waveforms of the corresponding matched and mismatched filters are denoted by hm(n)
and λ(n), respectively. Then the signal at the output of the matched filter So

hm
(n) may

be given by
So

hm
(n) = ε(n) ∗ hm(n), (1)

and similarly the signal at the output of the mismatched filter So
λ(n) can be expressed by

So
λ(n) = ε(n) ∗ λ(n). (2)
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Here ∗ denotes convolution. The impulse response of a matched filter is the inverse replica
of the input signal and hence hm(n) = ε(−n). The impulse response of a mismatched
filter λ(n), which does not create unwanted sidelobes, can be calculated from Damtie et
al. (2007)

λ(n) =
1
2π

∫ 2π

0

N

ε(ω)
e−jnωdω, (3)

where N is the length of the binary code, ε(ω) and N/ε(ω) are the discrete Fourier trans-
forms of ε(n) and λ(n), respectively. When ε(n) is convolved with the mismatched filter
calculated from eq. (3), one obtains a single peak without any sidelobes. Mismatched
filtering requires that the Fourier transform of the impulse response of the coding filter
should not have zeros.

Table 1. Optimal binary phase codes.

Optimal binary phase pattern N RN

+++--+++------+-+-+--+--+- 26 0.877

+++----+++-+++-+++-++-+--+- 27 0.862

++---+++-------+-+-++-++--+- 28 0.847

+-++--+--+-+-+-------+++--+++ 29 0.853

+++++-----+--+--+-+-+---++---+ 30 0.864

++---++---+-+-+--+--+------++++ 31 0.860

+-+-+-+--+-++----++++++++--++--+ 32 0.843

+-+-+-++--++-++-++++-++++------++ 33 0.856

++++++++----++-+--+-+-+-+--++--++- 34 0.867

+-+-+--+-+++++++-+--++-+---+++--++- 35 0.851

+--+-++-++--------++---+-++---+-+-+- 36 0.847

++++++++----++++--+-++-+-+-+--++--++- 37 0.850

++--++--+++++++++----++-+--+-++-+-+-+- 38 0.855

++++++++--+--+-++-++---++++---++-+-+-+- 39 0.849

++++++++-++-+--+-+--++--++-----++++---+-+-+-+ 45 0.850

++++++++--++--++--++++----+++-++-+--+-++-+-+-+-+-+ 50 0.843

-+-------++--+---+---++++++--+-++--+--+-+-++++--+++--+-+--++ 60 0.850

-------+++++++--+++-++++--+++-++-++--+++-+--++++--+-+++-+

--+-++-+-+-+- 70 0.845

--++-++-----++-++-----+----+--++----+--+-+--+-+-+---+-+-++-++++

++--++-----++---+ 80 0.820

-+-++-++-++-+--++--+-+----+++--++-+-++++-++--+++-+++-----++-

----+++-+-++++++--+---+-+++++++++-+-+-++ 100 0.823

3. Optimal binary phase codes and mismatched filter pairs

The selection of optimal binary phase code and mismatched filter pair is based on SNR
performance. A matched filter gives the maximum possible output SNR when one has an
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input signal corrupted by white noise. Therefore, we shall measure the SNR performance
of a binary phase code and mismatched filter pair by comparing it to the corresponding
output SNR from a matched filter. We introduce a parameter RN

RN =
SNRmis

SNRmat
, (4)

where SNRmis is the SNR at the output of a mismatched filter and SNRmat is the
SNR at the output of a matched filter. By considering white Guassian noise at the input
and combining eqs (1–4), one can obtain

RN =
∞∑

n=−∞
|hm(n)|2

( ∞∑
n=−∞

|λ(n)|2
)−1

. (5)

For a given length N of a binary code, we have investigated the SNR performance of
different phase patterns and choose a pattern with an optimal value of RN .

In this work for 26 ≤ N ≤ 30, the values of RN have been calculated for all possible
2N−1 number of binary phase code-mismatched filter pairs and the optimal binary phase
code is the one that gives the maximum possible value of RN . Table 1 shows the phase
patterns and the values of RN of the optimal binary phase codes we have found. When all
the optimal binary phase codes are compared with each other, one can see that the 26-bit
length binary phase code with phase +++−−+++−−−−−−+−+−+−−+−−+−
has the maximum value of RN .

It is extremely time consuming computing for some codes and for very long ones
impractically to carry out exhaustive computer search for binary phase codes with N ≥
31. However, we can get a glimpse of RN values for long codes by carrying out random
search. The results obtained by investigating 1000 randomly selected codes for each given
length of a code are shown in Table 1 and we see that performance did not increase with
length.

4. Conclusions

We have shown the optimal binary phase codes found by investigating 1.04 × 109 num-
ber of binary phase code-mismatched filter pairs. These codes may be used in several
applications. Some ionospheric physics can be better understood by having a very high
spatial and temporal resolutions. The characteristics of binary codes presented in Table
1 may be exploited to carry out a very high resolution ionospheric radar measurements.
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