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Dispersion relation for MHD waves in homogeneous
plasma
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Abstract. We consider viscosity and thermal conductivity as dissipation
mechanisms to derive a general dispersion relation for MHD waves propagating
in a homogeneous plasma. We show that the actual dispersion relation for MHD
waves in a homogeneous medium must be six-order. The finding is in agreement
(except some coefficients) with the results of Porter et al. (1994) but it is in
disagreement with the previous results obtained by Kumar et al. (2006). We
also discuss in detail differences between our approach and those considered by
other authors.
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1. Introduction

Coronal heating by magnetohydrodynamic (MHD) waves has been investigated exten-
sively, beginning with Braginskii (1965) and followed by several authors (see, e.g., Zweibel
1980; Habbal & Leer 1982; Gordon & Hollweg 1983; Cargill & Hood 1989; Porter et al.
1994; Laing & Edwin 1995; Pekünlü et al. 2001; Kumar et al. 2006). In this paper we de-
rive the dispersion relation showing intermediate results and discuss differences between
our approach and those considered by other authors.
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2. General dispersion relation

We consider viscosity and thermal conductivity as dissipation mechanisms. Equations of
conservation of mass, momentum, magnetic flux, energy and the equation of state are:

∂ρ

∂t
+∇ · (ρv) = 0, (1)

ρ
Dv

Dt
= −∇p +

(∇×B)×B
4π

−∇ ·Π, (2)

DB
Dt

= ∇× (v ×B), (3)

Dp

Dt
+ γp(∇ · v) = (γ − 1)(Qth + Qvisc −Qrad), (4)

and
p = 2nkBT =

2ρ

mp
kBT, (5)

where ρ, n, v, p,B, γ and T respectively are the total mass density, electron number den-
sity, velocity, total pressure, magnetic field vector, ratio of specific heats and temperature.
Π is viscosity tensor, Qth = ∇·κ∇T , where κ is thermal conductivity tensor, kB is Boltz-
mann constant, mp is proton mass, Qvisc is rate of viscous heating per unit volume, and
Qrad is rate of radiative loss per unit volume. We take Qvisc = −παβ(∂vα/∂xβ) from
Braginskii (1965) and Qrad = nenHλ(T ) from Bray et al. (1991). Following Porter et al.
(1994) we consider uniform background magnetic field, B0, directed along the z-axis and
homogeneous background plasma, with constant equilibrium values ρ0, T0, p0 and v0 = 0.
We linearize Eqs (1)–(5) under the first – order approximation and obtain:

∂ρ1

∂t
+ ρ0(∇ · v1) = 0, (6)

ρ0
∂v1

∂t
= −∇p1 +

(∇×B1)×B0

4π
−∇ ·Π, (7)

∂B1

∂t
= ∇× (v1 ×B0), (8)

Dp1

Dt
− γp0

ρ0

Dρ1

Dt
= (γ − 1)(Qth + Qvis −Qrad), (9)

and
p1

p0
=

ρ1

ρ0
+

T1

T0
. (10)

Assuming all disturbances in terms of Fourier components, exp(ik.r − iωt), where k =
kxx̂ + kz ẑ, we obtain the following algebraic equations:

ωρ− ρ0(kxv1x + kzv1z) = 0, (11)



Dispersion relation for MHD waves in homogeneous plasma 467

ωρ0v1x − kxp1 − B0

4π
(kxB1z − kzB1x) +

η0i

3
(k2

xv1x − 2kxkzv1z) = 0, (12)

ωρ0v1y +
B0

4π
kzB1y = 0, (13)

ωρ0v1z − kzp1 +
η0i

3
(4k2

zv1z − 2kxkzv1x) = 0, (14)

ωB1x + kzB0v1x = 0, (15)

ωB1y + kzB0v1y = 0, (16)

ωB1z − kxB0v1x = 0, (17)

iω(p1 − c2
sρ1)− (γ − 1)κ||k2

zT1 = 0, (18)

and
p1

p0
− ρ1

ρ0
− T1

T0
= 0. (19)

η0 is coefficient of viscosity. We note here that Eqs (11)–(19) are the same as Eqs (24)–
(32) of Kumar et al. (2006). The solution of the first set of equations (Eqs (13) and
(16)) in terms of variables v1y and B1y describes Alfvén waves in incompressible fluid.
The solutions of the second set of equations in terms of variables v1x, v1z, p1, T1, ρ1,
B1x and B1z describe the damped magnetoacoustic waves in the x–z plane (cf., Field
1965). Consequently, all other perturbation terms, namely p1, T1, ρ1, B1x, B1z must be
eliminated in terms of v1x and v1z, which are given as under.

From Eqs (18) and (19), we get

p1 =

(
c2
s + 1

ωρ0
i(γ − 1)κ‖k2

zT0

1 + 1
ωp0

i(γ − 1)κ‖k2
zT0

)
ρ1. (20)

When we substitute B1x and B1z from Eqs (15) and (17) in Eqs (12) and (14) we get:
(

ω2 − v2
Ak2 +

i

3ρ0
η0k

2
xω

)
v1x −

(
2i

3ρ0
η0kxkzω

)
v1z =

1
ρ0

kxp1ω, (21)

and (
2i

3ρ0
η0kxkz

)
v1x −

(
ω +

4i

3ρ0
η0k

2
z

)
v1z =

−1
ρ0

kzp1. (22)

When we put p1 from Eq. (20) in Eqs (21) and (22) and use Eq. (11), we get
(

ω3 − v2
Ak2ω − c2

sk
2
xω +

i

3ρ0
η0k

2
xω2 +

i

p0
(γ − 1)κ‖k2

zT0ω
2

− 1
3p0ρ0

η0(γ − 1)κ‖k2
xk2

zT0ω − i

p0
(γ − 1)κ‖v2

Ak2k2
zT0 − i

ρ0
(γ − 1)κ‖k2

xk2
zT0

)
v1x

=
(

2i

3ρ0
η0kxkzω

2 − 2
3p0ρ0

η0(γ − 1)κ‖kxk3
zT0ω + c2

skxkzω

+
i

ρ0
(γ − 1)κ||kxk3

zT0

)
v1z (23)
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and
(

c2
skxkzω +

2i

3ρ0
η0kxkzω

2 − 2
3p0ρ0

η0(γ − 1)κ‖kxk3
zT0ω +

i

ρ0
(γ − 1)κ‖kxk3

zT0

)
v1x =

(
ω3 − c2

sk
2
zω +

4 i

3ρ0
η0k

2
zω2 +

i

p0
(γ − 1)κ‖k2

zT0ω
2 − 4

3p0ρ0
η0(γ − 1)κ‖k4

zT0ω − i

ρ0
(γ − 1)κ‖k4

zT0

)
v1z. (24)

Eqs (23) and (24) are two sets of algebraic equations in terms of two independent variables
v1x and v1z. Setting the determinant of the coefficients of these two equations equal to
zero, we obtain the dispersion relation as:

ω6 + iAω5 −Bω4 − iCω3 + Dω2 + iEω − F = 0, (25)

where A = 2c0 + c1,
B = (c2

s + v2
A)k2 + c0(2c1 + c0),

C = c2 + c0(k2(c2
s + 2v2

A +
p0

ρ0
) + c0c1),

D = c2
sc6 + c0(c3 + c0c4),

E = c0(c0c5 + c6(c2
s +

p0

ρ0
)),

F = c2
0c6

p0

ρ0
.

and
c0 =

1
p0

(γ − 1)κ‖k2
zT0,

c1 =
1

3ρ0
η0(k2

x + 4k2
z),

c2 =
1

3ρ0
η0k

2
z(4v2

Ak2 + 9c2
sk

2
x),

c3 =
1

3ρ0
η0k

2
z

(
8v2

Ak2 + 9
(

c2
s +

p0

ρ0

)
k2

x

)
,

c4 =
(

v2
A +

p0

ρ0

)
k2,

c5 =
1

3ρ0
η0k

2
z

(
4v2

Ak2 + 9
p0

ρ0
k2

x

)
,

c6 = v2
Ak2k2

z .
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2.1 Kumar et al.’s derivation

Kumar et al. (2006) did not substitute the value of p1 in the momentum equations.
Instead, they obtained an additional equation from Eqs (11) and (20). This resulted in
three independent variables (erroneously defining the x–z plane in terms of three indepen-
dent variables). Accordingly, they obtained three sets of algebraic equations, two from
momentum equation and third from Eqs (11) and (20), in terms of three independent
variable v1x, v1z and p1, i.e.,

(
ω2 − v2

Ak2 +
i

3ρ0
η0k

2
xω

)
v1x −

(
2i

3ρ0
η0kxkzω

)
v1z − 1

ρ0
kxωp1 = 0, (26)

(
2i

3ρ0
η0kxkz

)
v1x −

(
ω +

4i

3ρ0
η0k

2
z

)
v1z +

1
ρ0

kzp1 = 0, (27)

and
(
c2
skxρ0ω + i (γ − 1)κ||kxk2

zT0

)
v1x +

(
c2
skzρ0ω + i (γ − 1)κ‖k3

zT0

)
v1z

−
(

ω2 +
i

p0
(γ − 1) κ‖k2

zωT0

)
p1 = 0. (28)

When we set the determinant of the coefficients of these three sets of algebraic equations
equal to zero, we obtain a five-order dispersion relation of Kumar et al. (2006), i.e.,

ω5 + iAω4 −Bω3 − iCω2 + Dω + iE = 0 (29)

where A = c0 + c1, B = (c2
s + v2

A)k2 + c0c1,

C =
(
c0c2 + c4 + c2

sc3

)
, D =

(
c0c4 + c2

sc5 +
p0

ρ0
c0c3

)
, E =

p0

ρ0
c0c5.

c0 =
1
p0

(γ − 1)κ‖k2
zT0, c1 =

1
3ρ0

η0(k2
x + 4k2

z), c2 = k2v2
A +

p0

ρ0
k2,

c3 =
3
ρ0

η0k
2
xk2

z , c4 =
4

3ρ0
η0k

2
zk2v2

A, c5 = v2
Ak2

zk2.

Here c2
s = γp0

ρ0
cm2s−2, v2

A = B2
0

4πρ0
cm2s−2, η0 = 10−16T

5/2
0 gm cm−1s−1 and κ‖ =

10−6T
5/2
0 gm cm s−3 deg−1 (Braginskii 1965; Porter et al. 1994).

Carbonell et al. (2004) have also derived a five-order dispersion relation, but for a
different plasma configuration in which the direction of magnetic field is along x-axis.
Moreover, they have not considered the effect of viscosity as a damping mechanism. It
is to be noted here that in deriving the dispersion relation, Carbonell et al. (2004) have
eliminated the perturbations p1, T1, ρ1, B1x, B1z in favour of v1x and v1z which resulted
in two algebraic equations for the velocity perturbations. This is in agreement with our
approach (cf., Eqs (23) and (24)) but it is in disagreement with Kumar et al. (2006)
approach.
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2.2 Porter et al.’s derivation

Our dispersion relation is in agreement (except some coefficients) with the results of
Porter et al. (1994) but it is in disagreement with the previous results obtained by
Kumar et al. (2006). The wave heating terms Qvisc and Qth are second order in energy
equation. In order to have equilibrium state, Porter et al. (1994) replaced Qrad by
λ2Qrad, which is relevant only when we calculate energy damping rate by applying small
damping approximation. However, amplitude damping rate (Im(ω)) is calculated from the
dispersion relation which is derived under the first order approximation. Consequently,
the wave heating terms (second order terms) are neglected in the derivation of dispersion
relation. This way, linearized forms and sets of algebraic equations will be the same as
given in our derivation. The dispersion relation of Porter et al. (1994) supports thermal
mode even in the absence of thermal conductivity about which we discuss further in the
following section.

3. Results and discussion

Kumar et al. (2006) have derived a five-order dispersion relation by taking 3×3 deter-
minant of the coefficients equal to zero. These coefficients in terms of three independent
variables v1x, v1z, and p1 appear in three algebraic equations as already noted. If we
follow this approach, we do not get the inequality conditions v1z À v1x (for slow mode
waves) and v1x À v1z (for fast mode waves) on which the weak damping approximation
is valid (cf., Porter et al., 1994), due to an additional term, p1. On the other hand, if we
follow Porter et al. (1994) we get two sets of algebraic equations in terms of two inde-
pendent variables v1x and v1z. When we set 2×2 determinant of the coefficients equal to
zero, we obtain a six-order dispersion relation.

The six-order dispersion relation has the dissipative terms of viscosity and ther-
mal conductivity. Solution of this dispersion relation provides six roots namely, ω1r −
iω1i,−ω1r − iω1i, ω2r − iω2i,−ω2r − iω2i, ω3r − iω3i and −ω4r − iω4i, where ω3r and
ω4r are negligibly small compared to ω1r and ω2r. Thus two roots are purely imaginary
which correspond to thermal mode and the other four roots are in the pair form. One pair
corresponds to slow mode and the other pair to fast mode. If we consider the thermal con-
ductivity only, we get six roots i.e., ω1r−iω1i,−ω1r−iω1i, ω2r−iω2i,−ω2r−iω2i, ω3r−iω3i

and −ω4r−iω4i. This means, we have slow mode, fast mode and thermal mode. When we
consider the viscosity term only, we get four roots i.e., ω1r − iω1i,−ω1r − iω1i, ω2r − iω2i

and −ω2r− iω2i. This simply means that the thermal mode is excited only when thermal
conductivity is present in the dispersion relation. It is to be further noted that the coef-
ficients in the dispersion relation of Porter et al. (1994) do have the dissipative terms of
viscosity, and thermal conductivity. Solution of this dispersion relation provides six roots
namely ω1r − iω1i − ω1r − iω1i, ω2r − iω2i,−ω2r − iω2i, ω3r − iω3i and −ω4r − iω4i. Thus
two roots are purely imaginary corresponding to thermal mode and the other four roots
are in the pair form, one pair corresponds to slow mode and the other to fast mode. If
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we consider thermal conductivity only (i.e., η0 = 0 but κ‖ 6= 0) we get five roots, having
the form ω1r − iω1i, −ω1r − iω1i, ω2r − iω2i, −ω2r − iω2i and ω3r − iω3i. Obviously,
one root is purely imaginary. Consequently, we get slow mode, fast mode and one root
corresponding to thermal mode. If we consider viscosity only (i.e., η0 6= 0 but κ|| = 0),
we again get five roots, having the form ω1r − iω1i, −ω1r − iω1i, ω2r − iω2i, −ω2r − iω2i

and ω3r − iω3i, which will result in slow mode, fast mode and thermal mode. It is to
be further noted that the dispersion relation of Porter et al. (1994) contains thermal
mode even in the absence of thermal conductivity. This is in conflict with the results of
De Moortel & Hood (2003) that the thermal modes can exist in the presence of thermal
conductivity only.

In conclusion, we have shown that the actual dispersion relation for MHD waves in
a homogeneous medium must be six-order. Our finding is in agreement (except some
coefficients) with the results of Porter et al. (1994) but it is in disagreement with the
previous results obtained by Kumar et al. (2006).
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