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Fractal analysis of galaxy surveys
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Abstract. Fractal analysis is a powerful tool to study the nature of galaxy distribution.
The use of multifractal analysis of the galaxy distribution for the investigation of the
transition to homogeneity in the Universe is reviewed. This analysis shows that the
Universe is homogeneous over scales larger than about 80h−1 to 100h−1 Mpc.
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1. Introduction

The framework of Cosmology is built on the hypothesis of homogeneity and isotropy of the
Universe at least over very large scales. From a philosophical point of view this claim is appealing
because it implies that there is no special point in the Universe. So attractive is this hypothesis
that it has become one of the central pillars for modern cosmology. However, observational
verification of this hypothesis is essential before one can consider seriously the various aspects
of cosmology today that are based on this fundamental hypothesis.

The distribution of galaxies, as indicated by galaxy surveys, suggests that the Universe is
far from being homogeneous and isotropic. There are regions where one finds aggregation of
galaxies. On the other hand, one also finds regions, called voids, that are conspicuous by the
sparcity of galaxies. As we probe galaxies with larger redshifts, we are probing their distributions
over larger scales in the Universe. There have been several surveys of galaxies conducted over
the years. Initially the surveys involved only angular distributions. We now have surveys which
have information about the distances of the galaxies from us as well. Thus one can infer the three
dimensional position of a large number of galaxies.
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One of the initial surveys of this kind was the CfA survey. The CfA-II survey probed the
Universe to a distance of about 150h−1Mpc. For h = 0.71 (as indicated by the results of WMAP),
this comes out to be about 200Mpc. Over the years one has been able to probe farther distances in
the Universe. The Las Campanas Redshift Survey (Shectman et al. 1996) probes distances up to
about 850Mpc for h = 0.71. Other surveys like the Sloan Digital Sky Survey, probe the Universe
to even farther distances.

Another technique which probes the distribution of matter, albeit more indirectly, is the anal-
ysis of the Cosmic Microwave Background Radiation (CMBR). Observations indicate that the
CMBR has a very high degree of isotropy. The photons of CMBR which we receive today contain
information about the state of the Universe at a redshift of z ∼ 1000. The epoch of the transi-
tion from the plasma era to the neutral phase is denoted by trec. After this epoch, the photons
by-and-large decouple from matter and travel almost unscattered till they reach us today t0. After
these photons got scattered for the last time, they would have travelled a certain distance before
reaching us. This distance would be the same in all directions. We can then define a hypothetical
spherical surface of last scatter with us in the centre of that (hypothetical) sphere. The isotropy
of the CMBR implies that all the points on the spherical surface are similar. We next assume
that there is nothing special about our position in the Universe. Any observer (located at any
other point) would see the same isotropy (statistically). Hence continuing this chain of reason, all
spherical surfaces would look the same whereever they are placed. This would be possible only
if the Universe is homogeneous.

In view of these two limits, namely those of homogeneity over very large scales and inhomo-
geneity over relatively smaller scales (as indicated by the galaxy distribution in our neighbour-
hood), it is natural to investigate the length scale over which this transition from inhomogeneity
to homogeneity takes place. The overall evolution of the Universe assumes an underlying homo-
geneity and isotropy. This would make sense only if applied to length scales which are bigger
than those corresponding to this transition and a measure of this transition scale is very crucial
for Cosmology.

Correlation function analysis has been a common method for this investigation. Fractal anal-
ysis is another method of investigating the nature of this transition and in this review, we focus
on this aspect.

2. Galaxy surveys and the motivation for fractal analysis

Correlation function measures the conditional probability of finding a galaxy at a position x + r,
given that there is another galaxy at a position x. More precisely, this is called the 2-point corre-
lation function. In practice, the information we have from the surveys is not that of probability
but of positions of galaxies. In order to implement this definition, we assume that the number
density of the galaxies is proportional to the probability density of finding a galaxy at a point. If
the galaxies do not show any tendency of clustering, the probability density of finding a galaxy
at a point is independent of finding another galaxy at any other point. In terms of the number
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density of galaxies, this would mean,

〈n(x)n(x + r)〉x = n2
0 (1)

where, the subscript x implies that the term in the angular brackets has been averaged over all
values of position (x) and n0 is the average number density of the galaxies, i.e., n0 = 〈n(x)〉x. In
practice, however, the averaging cannot be done over all the positions. We can only do it over the
region spanned by the survey. This is a limitation of the correlation function approach.

Clustering of points, (that of galaxies in our context) is characterized by the fact that the
conditional probability is greater than the product of the probability of finding a galaxy at these
two points. In terms of the number density of galaxies, it translates to,

〈n(x)n(x + r)〉x > n2
0 (2)

which can alternatively be expressed as,

〈n(x)n(x+ r)〉x = n2
0(1 + ξ(r)) (3)

The quantity ξ is defined as the 2-point correlation function and can be written as,

ξ(r) =
〈n(x)n(x+ r)〉x

n2
0

− 1 (4)

It is worth emphasizing that the process of averaging, which should in principle have been
done over all regions in the Universe, can in practice be done only within the sampled region. This
would be equal to the average number density of galaxies in the Universe only if the transition to
homogeneity occurs within the sample volume, i.e., the length scale of the transition is smaller
than the linear scale of the sample. This certainly is not guaranteed. This feature is a drawback
of the correlation analysis.

The two point correlation function ξ(r) is very well determined on small scales (Peebles 1993
and references therein). It scales as a power law in the distance between the two points.

ξ(r) =

(

r
r0

)−γ

with γ = 1.77 ± 0.04 and r0 = 5.4 ± 1h−1Mpc (5)

This power-law form suggests a scale invariant behaviour on scales less than r0.

Another statistical measure of the nature of clustering is the fractal dimension. An advan-
tage of this is that we do not have to assume that the homogeneity scale is less than the linear
scale of the survey. Further, as we will see below, the multi-fractal analysis contains much more
information than the simple two-point correlation function.
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3. Fractional dimensions and fractals

Fractals are an interesting way to characterize a distribution of points (Feder 1989; Falconer 1990;
Borgani 1995). While studying the nature of clustering of galaxies, we consider these galaxies as
points distributed in space. Fractals are characterized by a parameter called fractal dimension. In
general, there is not merely a single parameter but a spectrum of parameters that characterize this
distribution. As we shall see, the distribution of galaxies, up to a certain distance is characterized
by such a spectrum.

3.1 Box-counting dimension

Consider a box and a set of points distributed in it. We now divide each side of the box into half.
The number of smaller boxes will depend on the Euclidean dimension of the space in which the
box is embedded. For a d-dimensional space, the number of smaller boxes will be 2d. We are
now interested in the number of boxes that contain at least one point from the sample. In other
words, we need to count the number of non empty boxes. All the 2d boxes need not necessarily
have points in them. We then further divide each of these boxes into halves giving rise to 22d

number of boxes and we again count the number of non-empty boxes. This procedure is repeated
and at every stage we count the number of non-empty boxes, N(r), where r is the linear size of
the boxes. If N(r) scales as a power law in r, in the limit r −→ 0, we call the exponent as the
box-counting dimension Dbox

Dbox = − lim
r−→0

d log N(r)
d log r

(6)

We now justify calling this parameter as ‘dimension’. Consider a smooth curve in, say, 3
dimensions. We follow the procedure outlined above to compute this parameter. We enclose it in
a 3D box, divide the box into smaller and smaller (and hence, more and more) boxes and count
the number of non-empty boxes at every stage. In the limit of the box-size tending to zero, only
the infinitesimally small boxes along the curve will contribute to this number. Hence, in this limit
the number of non-empty boxes will scale as N(r) ∝ r−1, thus giving the box-counting dimension
to be 1 which is the same as our usual understanding of dimension of a smooth curve.

In a similar way, we can consider a surface in 3d. Following the above procedure of consider-
ing a box and dividing it into smaller boxes, we find that the fractal parameter is 2 which is equal
to the dimension of the surface. These are examples where the dimension is an integer. We can,
however, envisage a situation, in which, there is a distribution of points, for which, the parameter
which we call dimension, turns out to be a fraction. We call such distributions as fractals. In other
words, for such distributions, N(r) ∝ r−d, where d is not necessarily an integer.

There is, however a problem in using the above definition in practice. In a physically rel-
evant situation, we only have a countable set of points. In such a case, when we take the limit
r −→ 0 the size of the boxes become smaller than the inter-particle separation. In this limit the
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number of non-empty boxes do not change as we reduce the box-size further. In such a case, the
box-counting dimension turns out to be zero in the limit r −→ 0. Hence, in practice, using the
definition in this strict sense outlined above is of little value. Operationally we look for a reason-
able range of r in which N(r) scales as a power-law in r and call the exponent as the box-counting
dimension.

3.2 Correlation dimension

Correlation dimension is another way of characterizing fractal distributions. For a distribution
with N points we label the points using an index j which runs from 1 to N. Of the N points a
subset of M points indexed by i are selected.

For every point i, we count the total number of points which are within a distance r from the
ith point. We denote this number by ni(r), where,

ni(r) =
N

∑

j=1

Θ(r− | xi − xj |) (7)

where xi is the position vector of the ith point and Θ(x) is the Heaviside function. Θ(x) = 0 for
x < 0 and Θ(x) = 1 for x≥0. Clearly n′i s will be different for different i′s. The probability pi(r)
of finding a particle at a distance r about the centre i is obtained by dividing ni(r) by N. Since we
are interested in the statistical features of the distribution, we further average ni(r) over the set of
M centres. The resulting quantity, C2(r) is given by,

C2(r) =
1

MN

M
∑

i=1

ni(r) . (8)

If the C2 varies as a power-law in r

C2(r) ∝ rD2 (9)

the parameter, D2, is called the correlation dimension. In a real situation as in the case of galaxy
distribution, the value of D2 may be different over different ranges of scale.

The quantity C2(r) is closely related to the correlation function that we discussed earlier. This
quantity is related to the volume integral of the two point correlation function. For the regime,
where the two point correlation function exhibits a power-law behaviour ξ(r) = (r/ro)−γ, we
expect the correlation dimension to have a value D2 = 3 − γ.

4. Multi-fractals

The box-counting dimension and the correlation dimension quantify different aspects of the scal-
ing behaviour of a point distribution and they will have different values in a generic situation.
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In fact one can define several kinds of dimensions by considering moments of the distribution.
All these different types of dimensions are contained in the concept of generalized dimension.
It provides a continuous spectrum of dimensions Dq for a range of the parameter q. One of the
ways one can define generalized dimension is the Minkowski-Bouligand dimension Dq (Feder
1989; Falconer 1990). It is defined on similar lines as the correlation dimension. The difference,
however, is that we use the (q − 1)th moment of the galaxy distribution ni(r) (eq. 7) around any
point. We first construct

Cq(r) =
1

NM

M
∑

i=1

[ni(< r)]q−1 . (10)

The generalized dimension is given by,

Dq =
1

q − 1

dlnCq(r)

dlnr
. (11)

The quantity Cq(r) may exhibit different scaling behaviour over different scales and we can
in principle have more than one spectrum of generalized dimensions over these different ranges.

As is clear from from equations (10) and (11) the generalized dimension Dq corresponds to
the correlation dimension at q = 2.

Coinsider the case for q = 1. The exponent of ni (which is q − 1) in equation (10) is zero.
The quantity n0

i is zero for ni = 0 and is equal to unity for ni , 0.

n0
i = 0 f or ni = 0 (12)

n0
i = 1 f or ni , 0

Note that the implication of the above is that, if ni , 0, the actual value of ni is irrelevant in
equation (10). In other words, the sum appearing in equation (10) counts simply the number of
non-empty boxes, without any reference to the actual number in those boxes. This is precisely
the way we have defined box-counting dimension. Hence, Dq for q = 1 corresponds to the
box-counting dimension.

For a mono-fractal the generalized dimension is a constant i.e. Dq is independent of q.
It reflects the fact that for a mono-fractal, the point distribution is characterized by a unique
scaling behaviour. Further, if Dq is also equal to the Euclidean dimension, the distribution is
homogeneous. For a multi-fractal on the other hand, the values of Dq will be different for different
values of q. For q > 0, Dq probes the over-dense regions like clusters. The negative values of q, on
the other hand, give more weightage to the under-dense regions like voids. Minkowski-Bouligand
generalized dimension Dq is one of the possible definitions of a generalized dimension (Borgani
1995). Another way to characterize multi-fractals is the minimal spanning tree used by van der
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Weygaert and Jones (van der Weygaert & Jones 1992; Martinez 1991; Martinez & Jones 1990).
The calculation of the Minkowski-Bouligand generalized dimension is computationally simpler
than most other methods.

5. Multi-fractal analysis of galaxy surveys

While dealing with real galaxy surveys, the situation is much more complicated than it is for point
distribution. While we can theoretically define the concepts of dimension and calculate them for
a given distribution, there are several non-trivialities which come up when these are applied to
Galaxy surveys. As in the case of point set, the procedure is to choose a galaxy and draw circles
of increasing radii and count the galaxies in a particular circle as a function of the radius. (This is
the case when we consider slice surveys. For 3D surveys, this method needs to be generalized by
considering spheres instead of circles.) As long as we are sufficiently inside the survey region, the
effect of boundaries do not affect our analysis. Difficulties arise when we choose the centre near
the boundary of the sample. As we increase the radius of the circle beyond a particular value, a
part of the circle falls outside the sample region. Clearly, the nearer one is to the boundary, the
smaller should be the radius one considers. Operationally one can decide the largest radius one is
interested in, and identify the region in the distribution so that if the circle of that radius is centred
on any galaxy in that region, the circle should remain wholly inside the sample. The problem is
that the larger the scale we intend to analyze, the smaller the zone of inclusion and smaller the
number of centres available for averaging. This leads to larger statistical variations.

Further, one needs to apply several corrections on the observed data before one can subject
it to the fractal analysis. For example, the fainter galaxies far away tend to get missed out in the
survey and needs correction factors in order to compensate for this. Further, in the case of slice
surveys, the slices are collapsed to a two dimensional sheet. From the geometry of the slice, it is
clear that this process tends to include excess of galaxies for large distances as compared to the
nearby regions. Using different correction factors, one assigns an effective number of galaxies
corresponding to every galaxy observed. While calculating Cq for the galaxy distribution, it is
this effective number which is to be used. If w j is the correction factor for the jth galaxy, the
effective number of galaxies in a circle (for slice surveys) within a radius r about the centre i is
given by,

ni(r) =
N

∑

j=1

w jΘ(r− | xi − xj |) (13)

Using this expression for ni, one calculates the behaviour of Cq(r) with r for different q’s (Bharad-
waj et al. 1999; Pan & Coles 2000; Baryshev & Bukhmastova 2004).

6. Generic results

It is observed that the behaviour of Cq is different at large and small scales. In the analysis of
Las Campanas Redshift Survey, for example, this change occurs at about 80h−1Mpc. Figure 1
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Figure 1. The spectrum of generalized dimension is shown for a subsample of a slice from Las Campanas
Redshift Survey with declination δ = −12◦. Curve A refers to small scales (< 80h−1Mpc)and Curve B to
large scales (> 120h−1Mpc).

shows the generalized dimension spectrum Dq for one of the slices of the Las Campanas survey.
The striking feature that is seen is that if we separately analyze the distribution for scales less
than 80h−1Mpc and the one greater than 120h−1Mpc, the Dq curve shows a sharp change in its
behaviour. For scales less than 80h−1Mpc the distribution behaves clearly like a multifractal. For
larger scales, Dq becomes constant with q. This would have indicated a monofractal behaviour.
However, since the value of Dq is nearly equal to 2 which is the same as the Euclidean dimension,
this feature indicates a transition to homogeneity.

Further, we note that the difference between the two regions is more prominent if we consider
the entire Dq curve rather than just the value at q = 2. As we have seen q = 2 corresponds
to the correlation dimension which is related to the correlation function. This indicates that
the generalized dimension brings out the transition more clearly as compared to the correlation
function analysis.

Thus the fractal analysis shows

• that the universe is indeed homogeneous over very large scales.

• The transition to homogeneity occurs at a scale of around 100h−1Mpc.

• The multi-fractal analysis shows this transition much more clearly as compared with the
correlation function analysis.
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