Detecting Galactic HI line using the 4-m SRT

1 Goal of the experiment

The goal of the experiment is to detect the galactic HI line emission and to understand the physics behind it. In this experiment, we will observe the emission from neutral hydrogen (HI) present in our Galaxy, Milky Way. This emission occurs at 21 cm (1420 MHz) and arises due to the transition between the hyperfine splitted ground state of the hydrogen atom. The experiment involves positioning the tele- scope at a given point along the Galactic plane and taking the spectrum towards the pointed direction. Due to the rotation of the Galaxy, a shift in the line from its rest frequency is expected. The observed shift may either be redshift or blueshift and will depend on the position of the observed source on the Galactic plane. The spectrum thus obtained can then be analyzed to measure the line strength, width and position.

2 Brain Teaser

1. What is the distance of the sun from the centre of our galaxy? How the plane of the galaxy, plane of the solar system and plan of the revolution of the earth and the axis of rotation of the earth are linked with one another? Estimate maximum speed of the earth due to all these motions. How much Doppler shift will this motion be responsible for (if an observer decides to receive a signal from a stationary source outside our galaxy)?

Ans.:

2. Our galaxy - Milky way, forms a bright band in the sky visible on a dark night. Find out how the galaxy lies in the sky at the time of the experiment and draw it approximately in the space provided below by showing directions. Indicate whether the Galactic center, which is believed to harbour a supermassive black hole, is visible at the time of the experiment.

Ans.:

- 3. Three strong radio sources are CRAB, CAS-A and CYG-A. Which constellations harbour these ? indicate below the names of the constellations and whether these sources are visible at the time of experiment. If yes, find the area of sky where these will be located. Ans.:
- 4. Indicate the approximate time of rise and set in IST today when the sources with following RA and Dec can be observed using our 4-m telescope at NCRA East Campus.

RA	Dec	$\operatorname{Time}(\operatorname{IST})$
01h 30m	$+33^{\circ}\ 20'$	
$05h \ 31m$	$+21^{0} \ 10'$	
04h 37m	$-56^0 \ 01'$	
17h 10m	$-30^{0} 23'$	
$21h\ 05m$	$+40^{0} 21'$	

Table 1: List of sources

3 Procedure for the experiment

Before starting with the experiment, initialization of the telescope has to be done. For this purpose please refer to the document titled "Initialization of the 4-m Telescope System".

The experiment involves observations of a few selected points along the Galactic plane with 0 degree Galactic latitude. The list of some standard strong radio sources is given below. The Table-2 gives coordinates of 4 of the IAU calibrators (i.e., their brightness temperature (T_b) is accurately known - Williams, 1973) and can be used for the HI detection experiment as well as for determining the system temperature (T_sys). The sources given in Table-3 are the points on the galactic plane and can be used for mapping the Galactic HI emission.

Source	T_b (K)	RA	DEC
S9	85 ± 6	17h~52m~05s	$-34^{0} \ 25' \ 42''$
$\mathbf{S8}$	72 ± 5	05h~47m~21s	$-01^0 \ 40' \ 18''$
S7	$100{\pm}7$	$02h\ 06m\ 13s$	$+60^{\circ} 32' 52"$
S6	51 ± 4	$15\mathrm{h}~31\mathrm{m}~34\mathrm{s}$	$-02^0 \ 25' \ 09"$

Table 2: Coordinates of HI bright IAU calibrators sources, in J2000 Epoch

The source position is given in the Equatorial Coordinate System (RA,DEC) of 1950 epoch. Precess the coordinates to the epoch of your observation and convert it to Horizontal coordinates to get the position of the source at a given time. The telescope can be pointed to these sources by rotating it in both axes.

The procedure for the experiment is given below

1. Please read the document titled "Initialization and operation of 4-m telescope" and familiarize yourself with the instructions given there.

Source	Galactic	RA	DEC
Name	Longitude (deg)		
P01	0.0	$17h \ 42m \ 26s$	$-28^{\circ} 55' 00"$
P02	30.0	$18h \ 43m \ 28s$	$-02^0 \ 39' \ 46"$
P03	45.0	$19h \ 11m \ 20s$	$+10^0 \ 38' \ 13"$
P04	60.0	$19h \ 41m \ 47s$	$+23^{0} \ 46' \ 10"$
P05	75.0	$20h\ 19m\ 02s$	$+36^{\circ} 26' 45"$
P06	90.0	$21h \ 10m \ 18s$	$+48^{\circ} \ 07' \ 24"$
P07	105.0	$22h\ 28m\ 06s$	$+57^{0} \ 36' \ 13"$
P08	120.0	00h 23m 01s	$+62^{0} \ 26' \ 55"$
P09	135.0	$02h \ 28m \ 10s$	$+60^{\circ} \ 16' \ 29"$
P10	150.0	$04\mathrm{h}~00\mathrm{m}~39\mathrm{s}$	$+52^{0} 17' 01"$
P11	165.0	$05h\ 00m\ 42s$	$+41^{0} \ 16' \ 57"$
P12	180.0	05h~42m~26s	$+28^{0} 55' 00"$
P13	195.0	$06h \ 14m \ 58s$	$+15^{0} 55' 24"$
P14	210.0	06h~43m~28s	$+02^0 \ 39' \ 47"$
P15	240.0	07h~41m~47s	$-23^{0} \ 46' \ 10"$
P16	270.0	$09h \ 10m \ 18s$	$-48^{0} \ 07' \ 24"$
P17	300.0	$12h\ 23m\ 01s$	$-62^0 \ 26' \ 55"$
P18	330.0	$16h\ 00m\ 39s$	$-52^0 \ 17' \ 00"$

Table 3: Source coordinates along the Galactic plane in 1950 Epoch

Mode	spectral
Integration time	$1 \mathrm{sec}$
IF BW KHz	$30~\mathrm{KHz}$
Target Name	File Name

 Table 4: Spectral mode selection steps

Parameter	Values
IF Gain	25
DC Gain	10
DC Offset	1.8
$\operatorname{Time}/\operatorname{step}$	0.2
Upper limit	2000
Lower limit	-2000
Source name	Name

Table 5: Settings for spectral mode

In particular, read the "PRECAUTIONS" carefully and please follow these diligently.

- 2. Bring the telescope to home position, according to the line drawn on the ground pointing to East and keep the altitude minimum.
- 3. Switch on the receiver and the personal computer
- 4. The settings of the receiver for this experiment are as follows click and browse the setting for H1 line in spectral mode

Where filename should be HIbatchn (n=1/2/3/4/5 depending on the batch).

Options – click on "online"

Do the following setting for spectral mode

- 5. Find out the Al/Az for the source you have selected at the time of observation.
- 6. Rotate the antenna to make it point to the source and start scan by clicking on the scan icon in the receiving computer.
- 7. Check the spectrum. One should see the strong H1 line on the screen.

- 8. If the line is not visible, check if you have followed the procedure correctly, entered the offsets
- 9. If the line is visible, then recording data by putting autosave on. Check that the data is being recorded to the right filenames. Save 2,3 scans for each source.
- 10. Repeat the procedure for each of the source in Table 1 and 2. Record the data in a separate fileFill the file names in the observation log.
- 11. Bring the telescope to home position after doing the observations.

4 Observation Log

- 1. Source, Data file name :
- 2. Source, Data file name :
- 3. Source, Data file name :
- 4. Source, Data file name :
- 5. Source, Data file name :
- 6. Source, Data file name :
- 7. Source, Data file name :
- 8. Source, Data file name :
- 9. Source, Data file name :
- 10. Source, Data file name :
- 11. Source, Data file name :
- 12. Source, Data file name :
- 13. Source, Data file name :
- 14. Source, Data file name :
- 15. Source, Data file name :
- 16. Source, Data file name :

5 Analysis Procedure

- 1. Copy the data file from the PC where you recorded data to the pc where MATLAB is installed (Equivalently you can analyse the data in OCTAVE or GNUPLOT).
- 2. Save the data file as a text file with a name such as "p1h" or "p2h" etc.
- 3. Click on MATLAB icon.
- 4. Remove the first line and copy /export the data to the MATLAB editor in the first row
- 5. Give some name to the folder in the work space e.g. p1 etc.
- 6. write the following command in command window for plotting the data >>(your file name) e.g p1 this command will convert your data from column to row
 Create an x array as
 >> for i = 1:400 y(i) = 0.211*(1-201)*4 end
 Create a y array as
 for i = 1:400 y(i) = filename(i) end
 and to plot use,
 >>plot(x,y)

6 Log

1.	 Source : a. Baseline fit parameters : b. No of Gaussians required : c. Position of Gaussians : d. FWHM of Gaussians : e. Peak of Gaussians : f. Residual Chisq : 	± ± ±	km/s km/s km/s
2.	 Source : a. Baseline fit parameters : b. No of Gaussians required : c. Position of Gaussians : d. FWHM of Gaussians : e. Peak of Gaussians : f. Residual Chisq : 	± ± ±	km/s km/s km/s
3.	 Source : a. Baseline fit parameters : b. No of Gaussians required : c. Position of Gaussians : d. FWHM of Gaussians : e. Peak of Gaussians : f. Residual Chisq : 	± ± ±	km/s km/s km/s
4.	 Source : a. Baseline fit parameters : b. No of Gaussians required : c. Position of Gaussians : d. FWHM of Gaussians : e. Peak of Gaussians : f. Residual Chisq : 	± ± ±	km/s km/s km/s
5.	Source :a. Baseline fit parameters :b. No of Gaussians required :c. Position of Gaussians :d. FWHM of Gaussians :	± ±	m km/s $ m km/s$

	e. Peak of Gaussians : f. Residual Chisq :	±	$\rm km/s$
6.	 Source : a. Baseline fit parameters : b. No of Gaussians required : c. Position of Gaussians : d. FWHM of Gaussians : e. Peak of Gaussians : f. Residual Chisq : 	± ± ±	km/s km/s km/s
7.	 Source : a. Baseline fit parameters : b. No of Gaussians required : c. Position of Gaussians : d. FWHM of Gaussians : e. Peak of Gaussians : f. Residual Chisq : 	± ± ±	km/s km/s km/s
8.	 Source : a. Baseline fit parameters : b. No of Gaussians required : c. Position of Gaussians : d. FWHM of Gaussians : e. Peak of Gaussians : f. Residual Chisq : 	± ± ±	m km/s $ m km/s$ $ m km/s$
9.	 Source : a. Baseline fit parameters : b. No of Gaussians required : c. Position of Gaussians : d. FWHM of Gaussians : e. Peak of Gaussians : f. Residual Chisq : 	± ± ±	km/s km/s km/s
10.	Source : a. Baseline fit parameters : b. No of Gaussians required : c. Position of Gaussians :	±	km/s

d. FWHM of Gaussians :	±	$\rm km/s$
e. Peak of Gaussians :	±	$\rm km/s$
f. Residual Chisq :		

7 Results and Discussion

Calculate the Doppler velocity from the spectrum of the sources observed. Discuss the nature of the spectrum and its features. Comment on the velocity calculated and the location of these sources on the galactic plane. Discuss the factors responsible for the Doppler shift of your spectrum. Give the sources of error and explain the results.