
Chapter 4

Two Element Interferometers

Jayaram N. Chengalur

4.1 Introduction
From the van-Cittert Zernike theorem (see Chapter 2) it follows that if one knows the mu-
tual coherence function of the electric field, then the source brightness distribution can
be measured1. The electric field from the cosmic source is measured using an antenna,
which is basically a device for converting the electric field into a voltage that can then be
further processed electronically (see Chapter 3). In this chapter we will examine exactly
how the mutual coherence function is measured.
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Figure 4.1: A basic two element interferometer

1Or in plain english, one make make an image of the source
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We start by looking at the relationship between the output of a two element interfer-
ometer and the wanted mutual coherence function. Large interferometric arrays can be
regarded as collections of two element interferometers, and for this reason it is instructive
to understand in detail the working of a two element interferometer.

4.2 A Two Element Interferometer
Consider a two element interferometer shown in Figure 4.1. Two antennas 1, 2 whose
(vector) separation is b, are directed towards a point source of flux density S. The angle
between the direction to the point source and the normal to the antenna separation vector
is θ. The voltages that are produced at the two antennas due to the electric field from this
point source are v1(t) and v2(t) respectively. These two voltages are multiplied together,
and then averaged. Let us start by assuming that the radiation emitted by the source is
monochromatic and has frequency ν. Let the voltage at antenna 1 be v1(t) = cos(2πνt).
Since the radio waves from the source have to travel an extra distance b sin θ to reach
antenna 2, the voltage there is delayed by the amount b sin θ/c. This is called the geometric
delay, τg. The voltage at antenna 2 is hence v2(t) = cos(2πν(t−τg)), where we have assumed
that the antennas have identical gain. r(τg), the averaged output of the multiplier is
hence:

r(τg) =
1

T

∫ t+T/2

t−T/2
cos(2πνt) cos(2πν(t − τg))dt (4.2.1)

=
1

T

∫ t+T/2

t−T/2
(cos(4πνt− 2πτg) + cos(2πντg))dt

= cos(2πντg)

where we have assumed that the averaging time T is long compared to 1/ν. The
cos(4πνt) factor hence averages out to 0. As the source rises and sets, the angle θ changes.
If we assume that the antenna separation vector, (usually called the baseline vector or just
the baseline) is exactly east west, and that the source’s declination δ0 = 0, then θ = ΩEt, (
where ΩE is the angular frequency of the earth’s rotation) we have:

r(τg) = cos(2πν × b/c × sin(ΩE(t− tz))) (4.2.2)
where tz is the time at which the source is at the zenith. The output r(τg), (also called

the fringe), hence varies in a quasi-sinusoidal form, with its instantaneous frequency
being maximum when the source is at zenith and minimum when the source is either
rising or setting (Figure 4.2).

Now if the source’s right ascension was known, then one could compute the time at
which the source would be at zenith, and hence the time at which the instantaneous
fringe frequency would be maximum. If the fringe frequency peaks at some slightly dif-
ferent time, then one knows that assumed right ascension of the source was slightly in
error. Thus, in principle at least, from the difference between the actual observed peak
time and the expected peak time one could determine the true right ascension of the
source. Similarly, if the source were slightly extended, then when the waves from a given
point on the source arrive in phase at the two ends of the interferometer, waves arising
from adjacent points on the source will arrive slightly out of phase. The observed ampli-
tude of the fringe will hence be less than what would be obtained for a point source of the
same total flux. The more extended the source, the lower the fringe amplitude2. For a

2assuming that the source has a uniform brightness distribution
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Figure 4.2: The output of a two element interferometer as a function of time. The solid
line is the observed qausi-sinosoidal output (the fringe), the dotted line is a pure sinusoid
whose frequency is equal to the peak instantaneous frequency of the fringe. The instan-
taneous fringe frequency is maximum when the source is at the zenith (the center of the
plot) and is minimum when the source is rising (left extreme) or setting (right extreme).

sufficiently large source with smooth brigtness distribution, the fringe amplitude will be
essentially zero3. In such circumstances, the interferometer is said to have resolved out
the source.

Further, two element interferometers cannot distinguish between sources whose sizes
are small compared to the fringe spacing, all such sources will appear as point sources.
Equivalently when the source size is such that waves from different parts of the source
give rise to the same phase lags (within a factor that is small compared to π), then the
source will appear as a point source. This condition can be translated into a limit on ∆θ,
the minimum source size that can be resolved by the interferometer, viz.,

πν∆θb/c . π =⇒ ∆θ . λ/b

i.e., the resolution of a two element interferometer is ∼ λ/b. The longer the baseline,
the higher the resolution.

Observations with a two element interferometer hence give one information on both
the source position and the source size. Interferometers with different baseline lengths
and orientations will place different constraints on the source brightness, and the Fourier
transform in the van Cittert-Zernike theorem can be viewed as a way to put all this
information together to obtain the correct source brightness distribution.

4.3 Response to Quasi-Monochromatic Radiation
Till now we had assumed that the radiation from the source was monochromatic. Let us
now consider the more realistic case of quasi-monochromatic radiation, i.e. the radiation

3This is related to the fact that in the double slit experiment, the interference pattern becomes less distinct
and then eventually disappears as the source size is increased (see e.g. Born & Wolf, ‘Principles of Optics’,
Sixth Edition, Section 7.3.4). In fact the double slit setup is mathematically equivalent to the two element
interferometer, and much of the terminology in radio interferometry is borrowed from earlier optical terminology.
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spectrum4 contains all frequencies in a band ∆ν around ν, with ∆ν small compared
to ν. If the radiation at some frequency ν arrives in phase at the two antennas in the
interferometer, the radiation at some adjacent frequencies will arrive out of phase, and
if ∆ν is large enough, there will be frequencies at which the radiation is actually 180
degrees out of phase. Intuitively hence one would expect that averaging over all these
frequencies would decrease the amplitude of the fringe. More rigorously, we have

r(τg) =
1

∆ν

∫ ν+∆ν
2

ν−∆ν
2

cos(2πντg)dν (4.3.3)

=
1

∆ν
Re

[∫ ν+∆ν
2

ν−∆ν
2

ei2πντgdν

]

= cos(2πντg)

[
sin(π∆ντg)

π∆ντg

]

The quantity in square brackets, the sinc function, decreases rapidly with increasing
bandwidth. Hence as one increases the bandwidth that is accepted by the telescope,
the fringe amplitude decreases sharply. This is called fringe washing. However, since in
order to achieve reasonable signal to noise ratio one would require to accept as wide a
bandwidth as possible5, it is necessary to find a way to average over bandwidth without
losing fringe amplitude. To understand how this could be done, it is instructive to first
look at what the fringe would be for a spatially extended source.

Let the direction vector to some reference point on the source be s0, and further as-
sume that the source is small that it lies entirely on the tangent plane to the sky at s0,
i.e. that the direction to any point on the source can be written as s = s0+ σ, s0.σ= 0,
τg = s0.b. Then, from the van Cittert-Zernike theorem we have6:

r(τg) = Re

[∫
I(s)e

−i2πs.b
λ ds

]

= Re

[
e

−i2πs0.b

λ

∫
I(s)e

−i2πσ.b
λ ds

]

= |V| cos(2πντg + ΦV) (4.3.4)

where V, the complex visibility is defined as:

V = |V|e−iΦV =

∫
I(s)e

2πσ.b
λ (4.3.5)

The information on the source size and structure is contained entirely in V, the factor
cos(2πντg) in eqn. (4.3.4) only contains the information that the source rises and sets as
the earth rotates. Since this is trivial and uninteresting, it can safely be suppressed.
Conceptually, the way one could suppress this information is to introduce along the elec-
trical signal path of antenna 1 an instrumental delay τi which is equal to τg. Then we will
have r(τg) = |V| cos(ΦV), i.e. the fast fringe oscillation has been suppressed. One can then
average over frequency and not suffer from fringe washing. Since τg changes with time as
the source rises and sets, τi will also have to be continuously adjusted. This adjustment

4Radiation from astrophysical sources is inherently broadband. Radio telescopes however have narrow band
filters which accept only a small part of the spectrum of the infalling radiation.

5See Chapter 5
6apart from some constant factor related to the gain of the antennas which we have been ignoring throughout.
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of τi is called delay tracking. In most existing interferometers however, the process of
preventing fringe washing is slightly more complicated than the conceptual scheme de-
scribed above. The complication arises because delay tracking is usually done digitally in
the baseband, i.e. after the whole chain of frequency translation operations described in
Chapter 3. The geometric delay is however suffered by the incoming radiation, which is
at the RF frequency.
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Figure 4.3: A two element interferometer with fringe stopping and delay tracking (see
text).

4.4 Two Element Interferometers in Practice
To see this more clearly, let us consider the interferometer shown in Figure 4.3. The
signals from antennas 1, 2 are first converted to a frequency νBB using a mixer which is
fed using a local oscillator of frequency7 νLO, i.e. νLO = νRF − νBB. Along the signal path
for antenna 1 an additional instrumental delay τi = τg+∆τ is introduced, as is also a time
varying phase shift Φf . The reasons for introducing this phase shift will be clear shortly.
Then (see also equations 4.2.1 and 4.3.4) we have:

r(τg) = |V| 〈cos(ΦV + 2πνBBt− 2πνRF τg) cos(2πνBB(t− τi) + Φf )〉 (4.4.6)
= |V|cos(ΦV + 2π(νRF − νBB)τg − νBB∆τ − Φf )

= |V| cos(ΦV + 2πνLOτg − νBB∆τ − Φf ) (4.4.7)

7Note that it is important that the phase of the local oscillator signal be identical at the two antennas, i.e.
the local oscillator signal has to be distributed in a phase coherent way to both antennas in the interferometer.
Chapter 23 explains how this is acheived at the GMRT.
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So, in order to compensate for all time varying phase factors, it is not sufficient to have
τi = τg, one also needs to introduce a time varying phase Φf = 2πνLOτg. This additional
correction arises because the delay tracking is done at a frequency different from νRF .
The introduction of the time varying phase is called fringe stopping. Fringe stopping can
be achieved in a variety of ways. One common practice is to vary the instantaneous phase
of the local oscillator signal in arm 1 of the interferometer by the amount Φf . Another
possibility (which is the approach taken at the GMRT), is to digitally multiply the signal
from antenna 1 by a sinusoid with the appropriate instantaneous frequency.

Another consequence of doing delay tracking digitally is that the geometric delay can
be quantized only upto a step size which is related to the sampling interval with which
the signal was digitized. In general therefore ∆τ is not zero, and is called the fractional
sampling time error. Correction for this error will be discussed in the Chapter 9.

The delay tracking and fringe stopping corrections apply for a specific point in the
sky, viz. the position s0. This point is called the phase tracking center8. Signals, such
as terrestrial interference, which enter from the far sidelobes of the antennas do not
suffer the same geometric delay τg as that suffered by the source. Consequently, delay
tracking and fringe stopping introduces a rapidly varying change in the phase of these
signals. On long baselines, where the fringe rate is rapid, the terrestrial interference could
hence get completely decorrelated. While this may appear to be a terrific added bonus,
in principle, terrestrial interference is usually so much stronger than the emission from
cosmic sources, that even the residual correlation is sufficient to completely swamp out
the desired signal.

We end this chapter by re-establishing the connection between what we have just done
and the van Cittert-Zernike theorem. The first issue that we have to appreciate is that
the van Cittert-Zernike theorem deals with the complex visibility, V = |V|e−iΦV . However,
the quantity that has been measured is r(τg) = |V| cos(−ΦV). If one could also measure
|V| sin(−ΦV), then of course one could reconstruct the full complex visibility. This is in-
deed what is done at interferometers. Conceptually, one has two multipliers instead of
the one in Figure 4.3. The second multiplier is fed the same input as that in Figure 4.3,
except that an additional phase difference of π/2 is introduced in each signal path. As
can be easily verified, the output of this multiplier is |V| sin(−ΦV). Such an arrangement
of two multipliers is called a complex correlator. The two outputs are called the sine and
cosine outputs respectively. For quasi-sinsoidal processes, one has to introduce a π/2
phase difference at each frequency present in the signal. The corresponding transforma-
tion is called a Hilbert transform9. How the complex correlator is achieved at the GMRT
is described in Chapter 9. The output of the complex correlator is hence a single com-
ponent of the Fourier transform of the source brightness distribution10. The component
measured depends on the antenna separation as viewed from the source, i.e. (b.s0)/λ,
which is also called the projected baseline length. For a large smooth source, the Fourier
transform will be sharply peaked about the origin, and hence the visibility measured on
long baselines will be small.

Further Reading

1. Thompson, R. A., Moran, J. M. & Swenson, G. W. Jr., ‘Interferometry & Synthesis in
Radio Astronomy’, Wiley Interscience.

8For maximum sensitivity, one would also point the antennas such that their primary beam maxima are also
at s0.

9see Chapter 1
10This is true only if the antenna dimensions are neglected. Strictly speaking, the measured visibility is

an average over the visibilities in the range b + a to b − a where a is the diameter of the antennas and b is
the separation between their midpoints. As will be seen in Chapter 14 the fact that one has information on
visibilities on scales smaller than b is useful when attempting to image large regions of the sky.
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2. R. A. Perley, F. R. Schwab, & A. H. Bridle, eds., ‘Synthesis Imaging in Radio Astron-
omy’, ASP Conf. Series, vol. 6.
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