
Chapter 3

Single Dish Radio Telescopes

Jayaram N. Chengalur

3.1 Introduction
As a preliminary to describing radio telescopes, it is useful to have a look at the trans-
parency of the atmosphere to electro-magnetic waves of different frequencies. Figure 3.1
is a plot of the height in the atmosphere at which the radiation is attenuated by a factor of
2 as a function of frequency. There are only two bands at which radiation from outerspace
can reach the surface of the Earth, one from 3000 Å to 10000 Å – the optical/near-infrared
window, and one from a few mm to tens of meters – the radio window. Radio waves longer
than a few tens of meters get absorbed in the ionosphere, and those shorter than a few
mm are strongly absorbed by water vapor. Since mm wave absorption is such a strong
function of the amount of water vapour in the air, mm wave telescopes are usually located
on high mountains in desert regions.

The optical window extends about a factor of ∼ 3 in wavelength, whereas the radio
window extends almost a factor of ∼ 104 in wavelength. Hence while all optical telescopes
‘look similar’, radio telescopes at long wavelengths have little resemblance to radio tele-
scopes at short wavelengths. At long wavelengths, radio telescopes usually consist of
arrays of resonant structures, like dipole or helical antennas (Figure 3.2). At short wave-
lengths reflecting telescopes (usually parabolic antennas, which focus incoming energy
on to the focus, where it is absorbed by a small feed antenna) are used (Figure 3.3).

Apart from this difference in morphology of antennas, the principal difference between
radio and optical telescopes is the use of coherent (i.e. with the preservation of phase
information) amplifiers in radio astronomy. The block diagram for a typical single dish
radio astronomy telescope is shown in Figure 3.4. Radio waves from the distant cosmic
source impinge on the antenna and create a fluctuating voltage at the antenna terminals.
This voltage varies at the same frequency as the cosmic electro-magnetic wave, referred
to as the Radio Frequency (RF). The voltage is first amplified by the front-end (or Radio
Frequency) amplifier. The signal is weakest here, and hence it is very important that the
amplifier introduce as little noise as possible. Front end amplifiers hence usually use
low noise solid state devices, High Electron Mobility Transistors (HEMTs), often cooled to
liquid helium temperatures.

After amplification, the signal is passed into a mixer. A mixer is a device that changes
the frequency of the input signal. Mixers have two inputs, one for the signal whose fre-
quency is to be changed (the RF signal in this case), the other input is usually a pure sine
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Figure 3.1: The height above the Earth’s surface where cosmic electro-magnetic radiation
is attenuated by a factor of two. There are two clear windows the optical (V) (∼ 4000 −
10000 Å) and the radio ∼ 1mm − 10m. In addition there are a few narrow windows in
the infra-red (IR) wavelength range. At all other wavelengths astronomy is possible only
through satellites.

wave generated by a tunable signal generator, the Local Oscillator (LO). The output of the
mixer is at the beat frequency of the radio frequency and the local oscillator frequency.
So after mixing, the signal is now at a different (and usually lower) frequency than the RF,
this frequency is called the Intermediate Frequency (IF). The main reason for mixing
(also called heterodyning) is that though most radio telescopes operate at a wide range of
radio frequencies, the processing required at each of these frequencies is identical. The
economical solution is to convert each of these incoming radio frequencies to a standard
IF and then to use the exact same back-end equipment for all possible RF frequencies
that the telescope accepts. In telescopes that use co-axial cables to transport the signal
across long distances, the IF frequency is also usually chosen so as to minimize trans-
mission loss in the cable. Sometimes there is more than one mixer along the signal path,
creating a series of IF frequencies, one of which is optimum for signal transport, another
which is optimum for amplification etc. This is called a ‘super-heterodyne’ system. For
example, the GMRT (see Chapter 21) accepts radio waves in six bands from 50 MHz to
1.4 GHz and has IFs at 130 MHz, 175 MHz and 70 MHz1.

1There are IFs at 130 MHz and 175 MHz to allow the signals from the two different polarizations received
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Figure 3.2: The Mauritius Radio Telescope. This is a low frequency (150 MHz) array of
which the individual elements are helical antennas.

After conversion to IF, the signal is once again amplified (by the IF amplifier), and
then mixed to a frequency range near 0 Hz (the Base Band (BB) and then fed into the
backend for further specialized processing. What backend is used depends on the nature
of the observations. If what you want to measure is simply the total power that the
telescope receives then the backend could be a simple square law detector followed by
an integrator. (Remember the signal is a voltage that is proportional to amplitude of the
electric field of the incoming wave, and since the power in the wave goes like the square
of its amplitude, the square of the voltage is a measure of the strength of the cosmic
source). The integrator merely averages the signal to improve the signal to noise ratio.
For spectral line observations the signal is passed into a spectrometer instead of a broad
band detector. For pulsar observations the signal is passed into special purpose ‘pulsar
machines’. Spectrometers (usually implemented as “correlators”) and pulsar machines
are fairly complex and will not be discussed further here (see instead Chapters 8 and 17
more more details). The rest of this chapter discusses only the first part of this block
diagram, viz. the antenna itself.

3.2 EM Wave Basics
A cosmic source typically emits radio waves over a wide range of frequencies, but the
radio telescope is sensitive to only a narrow band of emission centered on the RF. We
can hence, to zeroth order, approximate this narrow band emission as a monochromatic
wave. (More realistic approximations are discussed in Chapter 15). The waves leaving
the cosmic source have spherical wavefronts which propagate away from the source at
the speed of light. Since most sources of interest are very far away from the Earth, the
radio telescope only sees a very small part of this spherical wave front, which can be well
approximated by a plane wave front. Electro-magnetic waves are vector waves, i.e. the

by the antenna to be frequency division multiplexed onto the same optical fiber for transport to the central
electronics building.
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Figure 3.3: The Caltech Sub-millimeter Observatory (CSO) at Mauna Kea in Hawaii. The
telescope operates in the the sub-mm wavlength range.

electric field has a direction as well as an amplitude. In free space, the electric field of
a plane wave is constrained to be perpendicular to its direction of propagation and the
power carried by the wave is proportional to the square of the amplitude of the electric
field.

Consider a plane EM wave of frequency ν propagating along the Z axis (Figure 3.6).
The electric field then can have only two components, one along the X axis, and one along
the Y axis. Since the wave is varying with a frequency ν, each of these components also
varies with a frequency ν, and at any one point in space the electric field vector will also
vary with a frequency ν. The polarization of the wave characterizes how the direction of
the electric field vector varies at a given point in space as a function of time.

The most general expression for each of the components of the electric field of a plane
monochromatic wave2 is:

EX = AX cos(2πνt+ δX)

EY = AY cos(2πνt+ δY )

where AX , AY , δX , δY are constants. If AY = 0, then the field only has one component
along the X axis, which increases in amplitude from −AX to +AX and back to −AX over
one period. Such a wave is said to be linearly polarized along the X axis. Similarly if AX
is zero then the wave is linearly polarized along the Y axis. Waves which are generated by
dipole antennas are linearly polarized along the length of the dipole. Now consider a wave
for which AX = AY , δX = 0, and δY = −π/2. If we start at a time at which the X component
is a maximum, then the Y component is zero and the total field points along the +X axis.
A quarter period later, the X component will be zero and the Y component will be at
maximum, the total field points along the +Y direction. Another quarter of a period later,
the Y component is again zero, and the X component is at minimum, the total field points

2Monochromatic waves are necessarily 100% polarized. As discussed in Chapter 15 quasi-monochromatic
waves can be partially polarized.
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Figure 3.4: Block diagram of a single dish radio telescope.

Figure 3.5: One of the 30 GMRT antennas
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Figure 3.6: Electric field of a plane wave

along the -X direction. Thus over one period, the tip of the electric field vector describes a
circle in the XY plane. Such a wave is called circularly polarized. If δY were = π/2 then
the electric field vector would still describe a circle in the XY plane, but it would rotate
in the opposite direction. The former is called Right Circular Polarization (RCP) and
the latter Left Circular Polarization (LCP).3 Waves generated by Helical antennas are
circularly polarized. In the general case when all the constants have arbitrary values, the
tip of the electric wave describes an ellipse in the XY plane, and the wave is said to be
elliptically polarized.

Any monochromatic wave can be decomposed into the sum of two orthogonal polar-
izations. What we did above was to decompose a circularly polarized wave into the sum
of two linearly polarized components. One could also decompose a linearly polarized
wave into the sum of LCP and RCP waves, with the same amplitude and π radians out of
phase. Any antenna is sensitive to only one polarization (for example a dipole antenna
only absorbs waves with electric field along the axis of the dipole, while a helical antenna
will accept only one sense of circular polarization). Note that the reflecting surface of a
telescope could well 4 work for both polarizations, but the feed antenna will respond to
only one polarization. To detect both polarizations one need to put two feeds (which could
possibly be combined into one mechanical structure) at the focus. Each feed will require
its own set of electronics like amplifiers and mixers etc.

EM waves are usually described by writing explicitly how the electric field strength
varies in space and time. For example, a plane wave of frequency ν and wave number k
(k = 2π/λ, λ = c/ν) propagating along the Z axis and linearly polarized along the X axis
could be described as

E(z, t) = A cos(2πνt− kz)

3This RCP-LCP convention is unfortunately not fixed, and the reverse convention is also occasionally used,
leading to endless confusion. It turns out however, that most cosmic sources have very little circular polariza-
tion.

4Not all reflecting radio telescopes have surfaces that reflect both polarizations. For example, the Ooty radio
telescope’s (Figure 3.16) reflecting surface consists of a parallel set of thin stainless steel wires, which only
reflect the polarization with the electric field parallel to the wires.
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This could also be written as

E(z, t) = Real(Aej(2πνt−kz))

where Real() implies taking the real part of () and j is the imaginary square root of −1.
Since all the time variation is at the same frequency ν, one could suppress writing it out
explicitly and introduce it only when one needs to deal with physical quantities. So, one
could equally well describe the wave by the complex quantity A, where A = A e−jkz, and
understand that the physical field is obtained by multiplying A by ej2πνt and taking the
real part of the product. The field A is called the phasor field5. So for example the phasor
field of the wave

E = A cos(2πνt− kz + δ)

is simply Aejδ.

3.3 Signals and Noise in Radio Astronomy
3.3.1 Signals
At radio frequencies, cosmic source strengths are usually measured in Janskys6 (Jy).
Consider a plane wave from a distant point source falling on the Earth. If the energy per
unit frequency passing through an area of 1 square meter held perpendicular to the line
of sight to the source is 10−26 watts then the source is said to have a brightness of 1 Jy,
i.e.

1 Jy = 10−26 W/m2/Hz,

For an extended source, there is no longer a unique direction to hold the square
meter, such sources are hence characterized by a sky brightness B, the energy flow at
Earth per unit area, per unit time, per unit solid angle, per unit Frequency, i.e. the units
of brightness are W/m2/Hz/sr.

Very often the sky brightness is also measured in temperature units. To motivate
these units, consider a black body at temperature T . The radiation from the black body
is described by the Planck spectrum

B(ν) =
2hν3

c2
1

ehν/kT − 1
W/m2/Hz/sr

i.e. the same units as the brightness. For a typical radio frequency of 1000 MHz, hν/k =
0.048, hence

ehν/kT ∼ 1 + hν/kT

and
B(ν) ' 2ν2

c2
kT = 2kT/λ2

This approximation to the Planck spectrum is called the Rayleigh-Jeans approxima-
tion, and is valid through most of the radio regime. From the R-J approximation,

T =
λ2

2k
B(ν)

5For qasi monochromatic waves, (see Chapter 1), one has the related concept of the complex analytical signal
6As befitting its relative youth, this is a linear, MKS based scale. At most other wavelengths, the brightness

is traditionally measured in units far too idiosyncratic to be described in this footnote.
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In analogy, the brightness temperature TB of an extended source is defined as

TB =
λ2

2k
B(ν).

where B(ν) is the sky brightness of the source. Note that in general the brightness
temperature TB has no relation to the physical temperature of the source.

For certain sources, like the quiet sun and HII regions, the emission mechanism
is thermal bremstrahlung, and for these sources, provided the optical depth is large
enough, the observed spectrum will be the Rayleigh-Jeans tail of the black body spec-
trum. In this case, the brightness temperature is a directly related to the physical tem-
perature of the electrons in the source. Sources for which the synchrotron emission
mechanism dominates, the spectrum is not black-body, but is usually what is called
steep spectrum7, i.e. the flux increases sharply with increasing wavelength. At low fre-
quencies, the most prominent such source is the Galactic non-thermal continuum, for
which the flux S ∝ ν−α, α ∼ 1. At low frequencies hence, the sky brightness temperature
dominates the system temperature8. Pulsars and extended extra-galactic radio sources
too in general have steep spectra and are brightest at low frequencies. At the extreme end
of the brightness temperature are masers where a lot of energy is pumped out in a narrow
collimated molecular line, the brightness temperatures could reach ∼ 1012 K. This could
certainly not be the physical temperature of the source since the molecules disintegrate
at temperatures well below 1012 K.

3.3.2 Noise
An antenna absorbs power from the radio waves that fall on it. This power is also usually
specified in temperature units, i.e. degrees Kelvin. To motivate these units, consider
a resistor placed in a thermal bath at a temperature T . The electrons in the resistor
undergo random thermal motion, and this random motion causes a current to flow in the
resistor. On the average there are as many electrons moving in one direction as in the
opposite direction, and the average current is zero. The power in the resistor however
depends on the square of the current and is not zero. From the equipartition principle
one could compute this power as a function of the temperature, and in the radio regime
the power per unit frequency is well approximated by the Nyquist formula:

P = kT,

where k is the same Boltzmann constant as in the Planck law. In analogy with this, if a
power P (per unit frequency) is available at an antenna’s terminals the antenna is defined
to have an antenna temperature of

TA =
P

k

Note again that the antenna temperature does not correspond to the physical temperature
of the antenna. Similarly the total power available at a radio telescope terminals, referred
to the receiver (i.e. the RF amplifier) inputs9 is defined as the system temperature Tsys,
i.e.

Tsys =
Total Power referred to receiver inputs

k
7provided that the source is optically thin
8See the discussion on system temperature later in this section
9By ‘referred to the reciever inputs’ we mean the following. Suppose you have a noise power P at the output

of the radio telescope. If there is only one stage of amplification with gain G, then the power referred to the
inputs is P/G. If there is more than one stage of amplification, one has to rescale each noise source along the
signal path by the gain of all the preceeding amplifiers.
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Figure 3.7: The Arecibo telescope consists of a large (300 m) spherical reflector fitted into
a naturally occuring valley. The telescope has feeds which are suspended from cables
which originate from towers on the surrounding hills. Photo courtesy of NAIC, Arecibo
observatory.

The system temperature when looking at blank sky is a measure of the total random
noise in the system and hence it is desirable to make the system temperature as low
as possible. Noise from the various sub systems that make up the radio telescope are
uncorrelated and hence add up linearly. The system temperature can be very generally
written as

Tsys = Tsky + Tspill + Tloss + Trec

Tsky is the contribution of the background sky brightness. For example the galaxy is
a strong emitter of non thermal10 continum radiation, which at low frequencies usually
dominates the system temperature. At all frequencies the sky contributes at least 3K
from the cosmic background radiation.11

The feed antenna is supposed to collect the radiation focused by the reflector. Often
the feed antenna also picks up stray radiation from the ground ( which radiates approx-
imately like a black body at 300 K ) around the edge of the reflector. This added noise
is called spillover noise, and is a very important contribution to the system temperature
at a telescope like Arecibo. In Figure 3.8 is shown (schematically) the system temper-
ature for the (pre-upgrade) Arecibo telescope at 12cm as a function of the zenith angle
at which the telescope is pointed. At high zenith angles the feed radiation spills over
the edge of the dish and picks up a lot of radiation from the surrounding hills and the

10By non thermal radiation one means simply that the source function is not the Planck spectrum.
11Historicaly, this fact was discovered by Penzias and Wilson when they set out to perform the relatively

mundane task of calibrating the system temperature of their radio telescope. This excess 3K discovered to
come from the sky was identified with the radiation from the Big Bang, and was one of the powerful pieces
of evidence in favour of the Big Bang model. The field of Radio Astronomy itself was started by Karl Jansky,
who too was engaged in the task of calibrating the system temperature of his antenna (he had been set the
task of characterizing the various kinds of noise which radio receivers picked up, this noise was harmful to
trans-atlantic communication, and was hence essential to understand). Jansky discovered that one component
of the ‘radio noise’ was associated with the Galactic center, the first detection of extra-terrestrial radio waves.
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Figure 3.8: Schematic of the variation of Tsys with zenith angle for the pre-upgrade
Arecibo.

system temperature changes from under 40 K to over 80 K. If a reflecting screen were to
be placed around the telescope edges, then, the spill over radiation will be sky radiation
reflected by the screen, and not thermal radiation from the ground. At cm wavelengths,
Tsky << Tground, so such a ground screen would significantly reduce the system tempera-
ture at high zenith angles12.

Any lossy element in the feed path will also contribute noise (Tloss ) to the system. This
follows from Kirchoff’s law which states that good absorbers are also good emitters, and
that the ratio of emission to absorption in thermodynamic equilibrium is given by the
Planck spectrum at the absorber’s physical temperature. This is the reason why there
are rarely any uncooled elements between the feed and the first amplifier. Finally, the
receiver also adds noise to the system, which is characterized by Trec. The noise added
after the first few stages of amplification is usually an insignificant fraction of the signal
strength and can often be ignored.

The final, increasingly important contributor to the system temperature is terrestrial
interference. If the bandwidth of the interference is large compared to the spectral resolu-
tion, the interference is called broad band. Steady, broad band interference increases the
system temperature, and provided this increase is small its effects are relatively benign.
However, typically interference varies on a very rapid time scale, causing a rapid fluctu-
ation in the system temperature. This is considerably more harmful, since such fluctu-
ations could have harmonics which are mistaken for pulsars etc. In aperture synthesis
telescopes such time varying effects will also produce artifacts in the resulting image13.
Interference whose bandwidth is small compared to the spectral resolution is called nar-
row band interference. Such interference, provided it is weak enough will corrupt only
one spectral channel in the receiver. Provided this spectral channel is not important (i.e.
does not coincide with for eg. a spectral line from the source) it can be flagged with little

12As can be seen from Figure 3.7, such a screen has indeed been built, and it has dramatically reduced the
system temperature at high zenith angles. The wire mesh for this screen was produced, with the co-ordination
of NCRA by the same contractor who fabricated the mesh for the GMRT antennas, and was exported to the
USA.

13It is often claimed that interferometers are immune from interference because different antennas “see”
different interfering sources and these do not correlate with one another. However since the interference is
typically varying on timescales faster than the system temperature is calibrated, the resulting variations in
the system temperatures of the different antennas cause variations in the observed correlation coefficent (for
telescopes which do a continuous normalization by the auto-correlation of each antenna’s signal) and hence
artifacts in the image plane.
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loss of information. However, if the interference is strong enough, the receiver saturates,
which has several deleterious effects. Firstly since the receiver is no longer in its linear
range, the increase in antenna temperature on looking at a cosmic source is no longer
simply related to the source brightness, making it difficult, and usually impossible to
derive the actual source brightness. This is called compression. Further if some other
spectral feature is present, perhaps even a spectral line from the source, spurious signals
are produced at the beat frequencies of the true spectral line and the interference. These
are called intermodulation products. Given the increasingly hostile interference envi-
ronment at low frequencies, it is important to have receivers with large dynamic range,
i.e. whose region of linear response is as large as possible. It could often be the case, that
it is worth increasing the receiver temperature provided that one gains in dynamic range.
For particularly strong and steady sources of interference (such as carriers for nearby TV
stations), it is usually the practice to block such signals out using narrow band filters
before the first amplifier14.

3.3.3 Signal to Noise Ratio
Since the signals15 in a radio telescope are random in nature, the output of a total power
detector attached to a radio telescope too will show random fluctuations. Supposing a
telescope with system temperature Tsys, gain G, and bandwidth ∆ν is used to try and
detect some astrophysical source. The strategy one could follow is to first look at a
‘blank’ part of the sky, and then switch to a region containing the source. Clearly if the
received power increases, then one has detected radio waves from this source16. But
given that the output even on a blank region of sky is fluctuating, how can one be sure
that the increase in antenna temperature is not a random fluctuation but is indeed due
to the astrophysical source? In order to make this decision, one needs to know what
the rms is in the fluctuations. It will be shown later17, that for a total power detector
with instantaneous rms Tsys, the rms after integrating a signal of bandwidth ∆ν Hz for
τ seconds is18 Tsys/

√
∆ντ . The increase in system temperature is just GS, where S is the

flux density of the source. The signal to noise ratio is hence

snr =
GS

√
∆ντ

Tsys

This is the fundamental equation for the sensitivity of a single dish telescope. Provided
the signal to noise ratio is sufficiently large, one can be confident of having detected the
source.

The signal to noise ratio here considers only the ‘thermal noise’, i.e. the noise from the
receivers, spillover, sky temperature etc. In addition there will be random fluctuations
from position to position as discussed below because of confusion. For most single dish
radio telescopes, especially at low frequencies, the thermal noise reaches the confusion
limit (see Section 3.4) in fairly short integration times. To detect even fainter sources,
it becomes necessary then to go for higher resolution, usually attainable only through
interferometry.

14Recall from the discussion above on the effect of introducing lossy elements in the signal path that the price
one pays is precisely an increase in receiver temperature

15Apart from interference etc.
16Assuming of course that you have enough spatial resolution to make this identification
17Chapter 5
18This can be heuristically understood as follows. For a stochastic proccess of bandwidth ∆ν, the coherence

time is ∼ 1/∆ν, which means that in a time of τ seconds, one has ∆ν τ independent samples. The rms decreases
as the square root of the number of independent samples.
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3.4 Antenna Patterns
The most important characteristic of an antenna is its ability to absorb radio waves in-
cident upon it. This is usually described in terms of its effective aperture. The effective
aperture of an antenna is defined as

Ae =
Power density available at the antenna terminals

Flux density of the wave incident on the antenna

The units are
W/Hz

W/m2/Hz
= m2

The effective area is a function of the direction of the incident wave, because the
antenna works better in some directions than in others. Hence

Ae = Ae(θ, φ)

This directional property of the antenna is often described in the form of a power pattern.
The power pattern is simply the effective area normalized to be unity at the maximum,
i.e.

P (θ, φ) =
Ae(θ, φ)

Amaxe

The other common way to specify the directive property of an antenna is the field pattern.
Consider an antenna receiving radio waves from a distant point source. The voltage at the
terminals of the antenna as a function of the direction to the point source, normalized
to unity at maximum, is called the field pattern f(θ, φ) of the antenna. The pattern
of an antenna is the same regardless of whether it is used as a transmitting antenna
or as a receiving antenna, i.e. if it transmits efficiently in some direction, it will also
receive efficiently in that direction. This is called Reciprocity, (or occassionaly Lorentz
Reciprocity) and follows from Maxwell’s equations. From reciprocity it follows that the
electric field far from a transmitting antenna, normalized to unity at maximum, is simply
the Field pattern f(θ, φ). Since the power flow is proportional to the square of the electric
field, the power pattern is the square of the field pattern. The power pattern is hence real
and positive semi-definite.

A typical power pattern is shown in Figure 3.9. The power pattern has a primary max-
imum, called the main lobe and several subsidiary maxima, called side lobes. The points
at which the main lobe falls to half its central value are called the Half Power points and
the angular distance between these points is called the Half Power Beamwidth (HPBW).
The minima of the power pattern are called nulls. For radio astronomical applications
one generally wants the HPBW to be small (so that the nearby sources are not confused
with one another), and the sidelobes to be low (to minimize stray radiation). From simple
diffraction theory it can be shown that the HPBW of a reflecting telescope is given by

ΘHPBW ∼ λ/D

where D is the physical dimension of the telescope. λ and D must be measured in the
same units and Θ is in radians. So the larger the telescope, the better the resolution.
For example, the HPBW of a 700 foot telescope at 2380 MHz is about 2 arcmin. This is
very poor resolution – an optical telescope (λ ∼ 5000Å), a few inches in diameter has a
resolution of a few arc seconds. However, the resolution of single dish radio telescopes,
unlike optical telescopes, is not limited by atmospheric turbulence. Figure 3.10 shows
the power pattern of the (pre-upgrade) Arecibo telescope at 2380 MHz. Although the
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Figure 3.9: Schematic power pattern of an antenna

telescope is 1000 ft in diameter, only a 700 ft diameter aperture is used at any given
time, and the HPBW is about 2 arc min. There are two sidelobe rings, which are not quite
azimuthally symmetric.

There are two other patterns which are sometimes used to describe antennas. The
first is the directivity D(θ, φ). The directivity is defined as:

D(θ, φ) =
Power emitted into (θ, φ)

(Total power emitted)/4π
(3.4.1)

=
4πP (θ, φ)∫
P (θ, φ) dΩ

(3.4.2)

(3.4.3)

This is the ‘transmitting’ pattern of the antenna, and from reciprocity should be the
same as the recieving power pattern to within a constant factor. We will shortly work out
the value of this constant. The other pattern is the gain G(θ, φ). The gain is defined as:

G(θ, φ) =
Power emitted into (θ, φ)

(Total power input)/4π
(3.4.4)

The gain is the same as the directivity, except for an efficiency factor. Finally a figure
of merit for reflector antennas is the aperture efficiency, η. The aperture efficiency is
defined as:

η =
Amaxe

Ag
(3.4.5)

where Ag is the geometric cross-sectional area of the main reflector. As we shall prove
below, the aperture efficiency is at most 1.0.

Consider observing a sky brightness distribution B(θ) with a telescope with a power
pattern like that shown in Figure 3.9. The power available at the antenna terminals is
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Figure 3.10: The (pre-upgrade) Arecibo power pattern at 2380 MHz. The HPBW is ∼ 2
′.
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Figure 3.11: The antenna temperature is the convolution of the sky brightness and the
telescope beam.

the integral of the brightness in a given direction times the effective area in that direction
(Figure 3.11).

W (θ
′

) =
1

2

∫
B(θ)Ae(θ − θ

′

)dθ (3.4.6)

where the available power W is a function of θ′ , the direction in which the telescope is
pointed. The factor of 1

2 is to account for the fact that only one polarization is absorbed
by the antenna. In two dimensions, the expression for W is:

W (θ
′

, φ
′

) =
1

2

∫
B(θ, φ)Ae(θ − θ

′

, φ− φ
′

) sin(θ)dθdφ (3.4.7)

in temperature units, this becomes:

TA(θ
′

, φ
′

) =
1

2

∫
TB(θ, φ)

λ2
Ae(θ − θ

′

, φ− φ
′

) sin(θ)dθdφ (3.4.8)

or
TA(θ

′

, φ
′

) =
Amaxe

λ2

∫
TB(θ, φ)P (θ − θ

′

, φ− φ
′

) sin(θ)dθdφ (3.4.9)

So the antenna temperature is a weighted average of the sky temperature, the weight-
ing function being the power pattern of the antenna. Only if the power pattern is a single
infinitely sharp spike is the antenna temperature the same as the sky temperature. For
all real telescopes, however, the antenna temperature is a smoothed version of the sky
temperature. Supposing that you are making a sky survey for sources. Then a large
increase in the antenna temperature could mean either that there is a source in the main
beam, or that a collection of faint sources have combined to give a large total power. From
the statistics of the distribution of sources in the sky (presuming you know it) and the
power pattern, one could compute the probability of the latter event. This gives a lower
limit to the weakest detectable source, below this limit,(called the confusion limit), one
can no longer be confident that increases in the antenna temperature correspond to a
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single source in the main beam. The confusion limit is an important parameter of any
given telescope, it is a function of the frequency and the assumed distribution of sources.

Now consider an antenna terminated in a resistor, with the entire system being placed
in a black box at temperature T . After thermal equilibrium has been reached, the power
flowing from the resistor to the antenna is:

PR→A = kT

The power flow from the antenna to the resistor is (from equation (3.4.9) and using the
fact that the sky temperature is the same everywhere)

PA→R =
(Amaxe kT

λ2

) ∫
P (θ, φ)dΩ

In thermal equilibrium the net power flow has to be zero, hence

Amaxe =
λ2

∫
P (θ, φ)dΩ

, (3.4.10)

i.e. the maximum effective aperture is determined by the shape of the power pattern
alone. The narrower the power pattern the higher the aperture efficiency. For a reflecting
telescope, ∫

P (θ, φ)dΩ ∼ Θ2
HPBW ∼

( λ
D

)2
.

so
Amaxe ∼ D2.

The max. effective aperture scales like the geometric area of the reflector, as expected.
Also from equation 3.4.10

Ae = Amaxe P (θ, φ) =
λ2P (θ, φ)∫
P (θ, φ)dΩ

. (3.4.11)

Comparing this with equation (3.4.1) gives the constant that relates the effective area to
the directivity

D(θ, φ) =
4π

λ2
Ae(θ, φ). (3.4.12)

As an application for all these formulae, consider the standard communications prob-
lem of sending information from antenna 1 (gain G1(θ, φ), input power P1) to antenna 2
(directivity D2(θ

′

, φ
′

)), at distance R away. What is the power available at the terminals of
antenna 2?

The flux density at antenna 2 is given by:

S =
P1

4πR2
G1(θ, φ)

. i.e., the power falls off like R2, but is not isotropically distributed. (The gain G1 tells you
how collimated the emission from antenna 1 is). The power available at the terminals of
antenna 2 is:

W = A2eS =
P1

4πR2
G1(θ, φ)A2e

substituting for the effective aperture from equation (3.4.12)

W =
( λ

4πR

)2
P1G1(θ, φ)D2(θ

′

, φ
′

)
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Figure 3.12: Aperture illumination for a parabolic dish.

This is called the Friis transmission equation. In Radar astronomy, there is a very
similar expression for the power available at an antenna after bouncing off an unresolved
target (the radar range equation). The major difference is that the signal has to make
a round trip, (and the target reradiates power falling on it isotropically), so the received
power falls like the fourth power of the distance to the target.

3.5 Computing Antenna Patterns
The next step is to understand how to compute the power pattern of a given telescope.
Consider a parabolic reflecting telescope being fed by a feed at the focus. The radiation
from the feed reflects off the telescope and is beamed off into space (Figure 3.12). If
one knew the radiation pattern of the feed, then from geometric optics (i.e. simple ray
tracing, see Chapter 19) one could then calculate the electric field on the plane across the
mouth of the telescope (the ‘aperture plane’). How does the field very far away from the
telescope lookslike? If the telescope surface were infinitely large, then the electric field
in the aperture plane is simply a plane wave, and since a plane wave remains a plane
wave on propagation through free space, the far field is simply a plane wave traveling
along the axis of the reflector. The power pattern is an infinitely narrow spike, zero
everywhere except along the axis. Real telescopes are however finite in size, and this
results in diffraction. The rigorous solution to the diffraction problem is to find the
appropriate Green’s function for the geometry, this is often impossible in practise and
various approximations are necessary. The most commonly used one is Kirchoff’s scalar
diffraction theory. However, for our purposes, it is more than sufficient to simply use
Huygen’s principle.

Huygen’s principle states that each point in a wave front can be regarded as an imag-
inary source. The wave at any other point can then be computed by adding together the
contributions from each of these point sources. For example consider a one dimensional
aperture, of length l with the electric field distribution (‘aperture illumination’) e(x). The
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field at a point P(R, θ) (Figure 3.13) due to a point source at a distance x from the center
of the aperture is (if R is much greater than l) is:

dE =
e(x)

R2
e−j

2πxsinθ
λ

sin( θ)x

O x

P

R

θ

d

Figure 3.13: The far-field pattern as a function of the aperture illumination.

Where x sin θ is simply the difference in path length between the path from the center
of the aperture to the point P and the path from point x to point P. Since the wave from
point x has a shorter path length, it arrives at point P at an earlier phase. The total
electric field at P is:

E(R, θ) =

∫ l/2

−l/2

e(x)

R2
e−jkµxdx

where k = 2π
λ and µ = sinθ and x is now measured in units of wavelength. The shape of

the distribution is clearly independent of R, and hence the unnormalized power pattern
FU is just:

FU (µ) =

∫ ∞

−∞
e1(x)e

−jkµxdx (3.5.13)

where
e1(x) = e(x) if |x| ≤ l/2 ; 0 otherwise

The region in which the field pattern is no longer dependent on the distance from the
antenna is called the far field region. The integral operation in equation (3.5.13) is called
the Fourier transform. FU (µ) is the Fourier transform of e1(x), which is often denoted as
FU (µ) = F

[
e1(x)

]
. The Fourier transform has many interresting properties, some of which

are listed below (see also Section 2.5).

1. Linearity
If G1(µ) = F

[
g1(x)

]
and G2(µ) = F

[
g2(x)

]
then G1(µ) +G2(µ) = F

[
g1(x) + g2(x)

]
.

2. Inverse
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The Fourier transform is an invertible operation; if

G(µ) =

∫ ∞

−∞
g(x)e−j2πµxdx

then
g(x) =

∫ ∞

−∞
G(µ)ej2πµxdµ

3. Phase shift
If G(µ) = F

[
g(x)

]
then G(µ−µ0) = F

[
g(x)e−j2πµ0x

]
. This means that an antenna beam

can be steered across the sky simply by introducing the appropriate linear phase
gradient in the aperture illumination.

4. Parseval’s theorem
If G(µ) = F

[
g(x)

]
, then ∫ ∞

−∞
|G(µ)|2dµ =

∫ ∞

−∞
|g(x)|2dx

This is merely a restatement of power conservation. The LHS is the power outflow
from the antenna as measured in the far field region, the RHS is the power outflow
from the antenna as measured at the aperture plane.

5. Area
If G(µ) = F

[
g(x)

]
, then

G(0) =

∫ ∞

−∞
g(x)dx

With this background we are now in a position to determine the maximum effective
aperture of a reflecting telescope. For a 2D aperture with aperture illumination g(x, y),
from equation (3.4.10)

Amaxe =
λ2

∫
P (θ, φ)dΩ

=
λ2

∫
|F (θ, φ)|2dΩ (3.5.14)

But the field pattern is just the normalized far field electric field strength, i.e.

F (θ, φ) =
E(θ, φ)

E(0, 0)

where E(θ, φ) = F
[
g(x, y)

]
. From property (5)

E(0, 0) =

∫
g(x, y)dxdy′ (3.5.15)

and from Parseval’s theorem,
∫

|E(θ, φ)|2dΩ =

∫
|g(x, y)|2dxdy (3.5.16)

substituting in equation (3.5.14) using equations (3.5.15), 3.5.16 gives,

Amaxe =
λ2
∣∣ ∫ g(x, y)dxdy

∣∣2
∫
|g(x, y)|2dxdy
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For uniform illumination
Amaxe

λ2
=
A2
g

Ag
= Ag

Note that since x and y are in units of wavelength, so is Ag. Amaxe however is in
physical units. Uniform illumination gives the maximum possible aperture efficiency (i.e.
1), because if the illumination is tapered then the entire available aperture is not being
used.

As a concrete example, consider a 1D uniformly illuminated aperture of length l. The
far field is then

E(µ) =

∫ l/2

−l/2
e−

j2πxµ
λ dx

=
λ sin(πl/λµ)

πµ

and the normalized field pattern is

F (µ) =
sin(πl/λµ)

(πl/λµ)

This is called a 1D sinc function. The 1st null is at µ = λ/l, the 1st sidelobe is at
µ = 3/2(λ/l) and is of strength 2/(3π). The strength of the power pattern 1st sidelobe is
(2/3π)2 = 4.5%. This illustrates two very general properties of Fourier transforms:

1. the width of a function is inversely proportional to width of its transform ( so large
antennas will have small beams and small antennas will have large beams), and

2. any sharp discontinuities in the function will give rise to sidelobes (‘ringing’) in the
fourier transform.

Figure 3.14 shows a plot of the the power and field patterns for a 700 ft, uniformly
illuminated aperture at 2380 MHz.

Aperture illumination design hence involves the following following tradeoffs (see also
Chapter 19):

1. A more tapered illumination will have a broader main beam (or equivalently smaller
effective aperture) but also lower side lobes than uniform illumination.

2. If the illumination is high towards the edges, then unless there is a very rapid cutoff
(which is very difficult to design, and which entails high sidelobes) there will be a lot
of spillover.

Another important issue in aperture illumination is the amount of aperture blockage.
The feed antenna is usually suspended over the reflecting surface (see Figure 3.3) and
blocks out part of the aperture. If the illumination is tapered, then the central part of the
aperture has the highest illumination and blocking out this region could have a drastic
effect on the power pattern. Consider again a 1D uniformly illuminated aperture of length
l with the central portion of length d blocked out. The far field of this aperture is (from
the linearity of fourier transforms) just the difference between the far field of an aperture
of length l and an aperture of length d, i.e.

E(µ) ∝ sin(πlµ/λ)

πµ
− sin(πdµ/λ)

πµ
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Figure 3.14: Power and field patterns for a 1D uniformly illuminated aperture.

or the normalized field pattern is:

F (µ) =
λ

(l − d)

[sin(πlµ/λ)

πµ
− sin(πdµ/λ)

πµ

]

The field pattern of the “missing” part of the aperture has a broad main beam (since
d < l). Subtracting this from the pattern due to the entire aperture will give a resultant
pattern with very high sidelobes. In Figure 3.15 the solid curve is the pattern due to the
entire aperture, the dotted line is the pattern of the blocked part and the dark curve is
the resultant pattern. (This is for a 100ft blockage of a 700 ft aperture at 2380 MHz).
Aperture blockage has to be minimized for a ‘clean’ beam, many telescopes have feeds
offset from the reflecting surface altogether to eliminate all blockage.

As an example of what we have been discussing, consider the Ooty Radio Telescope
(ORT) shown in Figure 3.16. The reflecting surface is a cylindrical paraboloid (530m×30m)
with axis parallel to the Earth’s axis. Tracking in RA is accomplished by rotating the
telescope about this axis. Rays falling on the telescope get focused onto the a line focus,
where they are absorbed by an array of dipoles. By introducing a linear phase shift
across this dipole array, the antenna beam can be steered in declination (the “phase
shift” property of Fourier transforms). The reflecting surface is only part of a paraboloid
and does not include the axis of symmetry, the feed is hence completely offset, there is no
blockage. The beam however is fan shaped, narrow in the RA direction (i.e. that conjugate
to the 530m dimension) and broad in the DEC (i.e. that conjugate to the 30m dimension).

Aperture blockage is one of the reasons why an antenna’s power pattern would deviate
from what one would ideally expect. Another common problem that affects the power



22 CHAPTER 3. SINGLE DISH RADIO TELESCOPES

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

Arc Minutes

Figure 3.15: Effect of aperture blockage on the power pattern.

pattern is the location of the feed antenna. Ideally the feed should be placed at the focus,
but for a variety of reasons, it may actually be displaced from the focus. For example,
as the antenna tracks, the reflecting surface gets distorted and/or the feeds legs bend
slightly, and for these reasons, the feed is displaced from the actual focal point of the
reflector. In an antenna like the GMRT, there are several feeds mounted on a cubic
turret at the prime focus, and the desired feed is rotated into position by a servo system
(see Chapter 19). Small errors in the servo system could result in the feed pointing
not exactly at the vertex of the reflector but along some slightly offset direction. This is
illustrated in Figure 3.17. For ease of analysis we have assumed that the feed is held
fixed and the reflector as a whole rotates. The solid line shows the desired location of the
reflector (i.e. with the feed pointing at its vertex) while the dashed line shows the actual
position of the reflector. This displacement between the desired and actual positions
of the reflector results in an phase error (produced by the excess path length between
the desired and actual reflector positions) in the aperture plane. From the geometry of
Figure 3.17 this phase error can be computed, and from it the corresponding distortion
in the field and power patterns can be worked out. Figure 3.18[A] shows the result of
such a calculation. The principal effect is that the beam is offset slightly, but one can
also see that its azimuthal symmetry is lost. Figure 3.18[B] shows the actual measured
power pattern for a GMRT antenna with a turret positioning error. As can be seen, the
calculated error pattern is a fairly good match to the observed one. Note that in plotting
Figure 3.18[B] the offset in the power pattern has been removed (i.e. the power pattern
has been measured with respect to its peak position).

Further Reading
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Figure 3.16: The Ooty radio telescope.
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Figure 3.17: Turret positioning error. Ideally the feed should point at the vertex of the
reflecting surface, but if the feed turret rotation angle is in error then the feed points
along some offset direction.
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(A) (B)

Figure 3.18: [A] Calculated beam pattern for a turret positioning error. [B] Measured
beam pattern for a turret positioning error. The offset in the pattern has been removed,
i.e. the power pattern has been measured with respect to its peak position.


