
Chapter 16

Ionospheric effects in Radio
Astronomy

A. P. Rao

16.1 Introduction
At the low densities encountered in the further reaches of the earth’s atmosphere and
in outer space, collisions between particles are very rare. Hence, unlike in a terrestrial
laboratory, it is possible for gas to remain in an ionized state for long periods of time.
Such plasmas are ubiquitous in astrophysics, and have been extensively studied for their
own sake. In this chapter however, we focus on the effects of this plasma on radio waves
propagating through them, and will find astrophysical plasmas to be largely of nuisance
value.

The refractive index of a cold neutral plasma is given by

µ(ν) =

√
1 −

ν2
p

ν2
, (16.1.1)

where νp the “plasma frequency is given by

νp =

√
nee2

πme
' 9

√
ne kHz (16.1.2)

where e is the charge on the electron, me is the mass of the electron and ne is the electron
number density (in cm−3). At frequencies below the plasma frequency νp the refractive
index becomes imaginary, i.e. the wave is exponentially attenuated and does not propa-
gate through the medium. The earth’s ionosphere has electron densities ∼ 104−105 cm−3,
which means that the plasma frequency is ∼ 1 − 10 MHz. Radio waves with such low
frequencies do not reach the earth’s surface and can be studied only by space based tele-
scopes. The plasma between the planets is called the Interplanetary Medium (IPM) and
has electron densities ∼ 1 cm−3 (at the earth’s location); the corresponding cut off fre-
quency is ∼ 9 kHz. The typical density in the Interstellar Medium (ISM) is ∼ 0.03 cm−3 for
which the cut off frequency is ∼ 1 kHz. Waves of such low frequency from extra solar sys-
tem objects cannot be observed even by spacecraft since the IPM and ISM will attenuate
them severely.
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The dispersion relationship in a cold plasma is given by c2k2 = ω2 − ω2
p. Since this

is a non linear relation there are two characteristic velocities of propagation, the phase
velocity given by

vp =
ω

k
=
c

µ
' c (1 +

1

2

ν2
p

ν2
) (16.1.3)

and the group velocity which is given by

vg =
dω

dk
= cµ ' c (1 − 1

2

ν2
p

ν2
). (16.1.4)

Where for the last expression we have assumed that ν >> νp (which is usually the regime
of interest).

16.2 Propagation Through a Homogeneous Plasma
Even above the cutoff frequency there are various propagation effects that are important
for a radio wave passing through a plasma. Let us start with the most straightforward
ones. Consider a radio signal passing through a homogeneous slab of plasma of length L.
The signal is delayed (with respect to the propagation time in the absence of the plasma)
by the amount

∆T =
L

vg
− L

c
=
L

c
(1/µ− 1) ' L

c

1

2

ν2
p

ν2
.

The magnitude of the propagation delay can hence be written as

|∆T | =
L

c
× 4 × 106

ν2
Hz

ne.

The propagation delay can also be considered as an “excess path length” ∆L = c ∆T .
Further since (vg/c − 1) and (vp/c − 1) differ only in sign1, the magnitude of the “excess
phase” (viz. 2πν(L/vp − L/c)) is given by ∆Φ = 2πν∆T . Note that since the propagation
delay is a function of frequency ν, waves of different frequencies get delayed by different
amounts. A pulse of radiation incident at the far end of the slab will hence get smeared
out on propagation through the slab; this is called “dispersion”. If the plasma also has
a magnetic field running through it then it becomes birefringent – the refractive index
is different for right and left circularly polarized waves. A linearly polarized wave can
be considered a superposition of left and right circularly polarized waves. On propaga-
tion through a magnetized plasma the right and left circularly polarized components are
phase shifted by different amounts, or equivalently the plane of polarization of the lin-
early polarized component is rotated. This rotation of the plane of polarization on passage
through a magnetized plasma is called “Faraday rotation”. The angle through which the
plane of polarization is rotated is given by

Θ = RMλ2 = 0.81λ2

∫
neB||dl.

and RM is called the rotation measure. For the second equality λ is in meters, ne is in
cm−3, B|| is in µG and the length is in parsecs.
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Figure 16.1: Propagation through a plane parallel ionosphere

16.3 Propagation Through a Smooth Ionosphere
For an interferometer, there are two quantities of interest (i) the delay difference between
the signals reaching the two arms of the interferometer (δT = ∆T1 − ∆T2), where ∆T1

and ∆T2 are the propagation delays for the two arms of the interferometer, and (ii) the
phase difference between the signals reaching the two arms of the interferometer (δφ =
2π/λ(∆L1 −∆L2), where ∆L1 and ∆L2 are the excess path lengths for the two arms of the
interferometer. Generally δT is small compared to the coherence bandwidth of the signal
and can be ignored to first order, however δφ could be substantial.

In a homogeneous plane parallel ionosphere with refractive index µ (see Figure 16.1),
we have from Snell’s law µ sin(z0) = sin(z). The observed geometric delay is τg = µD sin(z0)/c,
since the group velocity is c/µ. From Snell’s law therefore, τg = D sin(z)/c, the same as
would have been observed in the absence of the ionosphere. A homogeneous plane paral-
lel ionosphere hence produces no net effect on the visibilities, even though the apparent
position of the source has changed. In the case where the interferometer is located out-
side the slab, there is neither a change in the apparent position nor a change in the
phase, as is obvious from the geometry. This entire analysis holds for a stratified plane
parallel ionosphere (since it is true for every individual plane parallel layer). However,
in the real case of a curved ionosphere, with a radial variation of electron density, then
neither the change in the apparent position nor δφ are zero even outside the ionosphere.
Effectively, the direction of arrival of the rays from the distant source appears to be dif-
ferent from the true direction of arrival (as illustrated in Figure 16.2) and unlike in the
plane parallel case this is not exactly canceled out by the change in the refractive index.
If ∆θ is the difference between the true direction and apparent directions of arrival, then
one can compute that

∆θ =
A sin(z0)

r0

∫ ∞

0

α2µ(h)dh

(1 − α2 sin2(z0))
. (16.3.5)

where z0 is the observed zenith angle, r0 is the radius of the earth, h is the height above
the earth’s surface and, µ(h) is the refractive index at height h, and A is a constant. For
baseline lengths typical of the GMRT, this value is the same for both arms of the baseline.
If the baseline has UV co-ordinates (u,v), then the phase difference due to the apparent
change in the source position is given by

∆φ = 2π(u∆θEW + v∆θNS).

1to first order for ν >> νp, as can be easily verified.
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Figure 16.2: Propagation through a curved ionosphere

Max. Val Min Val Freq. Dependence
(Day) (Night)

TEC 5 × 1013 cm−2 5 × 1012 cm−2 -
Group Delay 12 µsec 1.2 µsec ν−2

Excess Path 3500 m 350 m ν−2

Phase Change 7500 rad 750 m ν−2

Phase Fluctuation ±150 rad ±15 rad ν−2

Mean Refraction 6
′

0.6
′

ν−2

Faraday Rotation 15 cycles 1.5 cycles ν−2

Table 16.1: Typical numerical values of various ionospheric effects

Typical values for some of the ionospheric prorogation effects that we have been dis-
cussing are given in Table 16.1.

16.4 Propagation Through an Inhomogeneous
Ionosphere

So far we have been dealing with an ionosphere, which, while not homogeneous, is still
fairly simple in that the density fluctuations are smooth, slowly varying functions. Fur-
ther, the ionospheric density was assumed to not vary with time. In reality, the earth’s
ionosphere shows density fluctuations on a large range of length and time scales. A den-
sity fluctuation of length scale l at a height h above the earth’s surface corresponds to a
fluctuation on an angular scale of l/h. For a typical length scale l of 10 km, at a height of
200 km, the corresponding angular scale is ∼ 3o. This means that the phase difference
introduced by the ionosphere changes on an angular scale of 3o. If this phase is to be
calibrated out, then one would need to pick a calibrator that is within 3o of the target
source — for most sources it turns out that there is no suitable calibrator this close by.
This problem gets increasingly worse as one goes to lower frequencies since the excess
ionospheric phase increases as ν−2. As discussed in Chapter 5 therefore, as long as the
excess ionospheric phase is constant over the field of view, this phase can be lumped in
with the electronic phase of receiver chain, and can be solved for using self-calibration.

However, for a given antenna, as one observes at lower and lower frequencies, the field
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Figure 16.3: For short enough baselines, the isoplantic assumption holds even if the field
of view is larger than the typical coherence length of the ionospheric irregularities. This
is because both arms of the interferometer get essentially the same excess phase.

of view increases as ν−1. Since the excess ionospheric phase is also increasing rapidly
with decreasing frequency, one will soon hit a point where the assumption that the excess
phase is constant over the field of view is a poor one. At this point the self-calibration
algorithm is no longer applicable. Variations of the ionospheric phase over the field of view
are referred to as “non isoplanaticity”. As illustrated in Figure 16.3, when the baseline
length is small compared to the typical length scale of ionospheric density fluctuations,
even though the ionospheric phase is different for different sources in the field of view, the
excess phase is nearly identical at both ends of the baseline. Since interferometers are
sensitive only to phase differences between the two antennas, the isoplanatic assumption
still holds. The non isoplanaticity problem hence arises only when the baselines as well
as the field of view are sufficiently large. For the GMRT, isoplanaticity is often a poor
assumption at frequencies of 325 MHz and lower.

16.5 Angular Broadening
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Figure 16.4: Angular broadening.

As discussed in the previous sections, the small scale fluctuations of electron density in
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the ionosphere lead to an excess phase for a radio wave passing through it. This excess
phase is given by

φ(x) =
2π

λ

∫
∆µdz,

φ(x) = Cλ

∫
∆n(x, z)dz,

where ∆µ is the change in refractive index due to the electron density fluctuation, C is
a constant and ∆n(x, z) is the fluctuation in electron density at the point (x,z) and the
integral is over the entire path traversed by the ray (see Figure 16.4).

If we assume that φ(x) is a zero mean Gaussian random process, with auto-correlation
function given by φ2

0ρ(r), where ρ(r) = e−r
2/2a2

φ , then from the relation above for φ(x) we
can determine that φ2

0 ∝ λ2∆n2L, where L is the total path length through the ionosphere2.
Let us assume that a plane wavefront from an extremely distant point source is incident
on the top of such an ionosphere. In the absence of the ionosphere the wave reaching the
surface of the earth would also be a plane wave. For a plane wave the correlation function
of the electric field (i.e. the visibility) is given by

〈
Ei(x)E i∗(x + r)

〉
= Ei

2, i.e. a constant
independent of r. On passage through the ionosphere however, different parts of the wave
front acquire different phases, and hence the emergent wavefront is not plane. If E(x)
is the electric f ield at some point on the emergent wave, then we have E(x) = Eie

−iφ(x).
Since Ei is just a constant, the correlation function of the emergent electric field is

〈
E(x)E∗(x+ r)

〉
= E2

i

〈
e−i(φ(x)−φ(x+r))

〉
.

From our assumptions about the statistics of φ(x) this can be evaluated to give
〈
E(x)E∗(x+ r)

〉
= E2

i e
−2φ2

0(1−ρ(r)). (16.5.6)

If φ2
0 is very large, then the exponent is falls rapidly to zero as (1 − ρ(r)) increases (or

equivalently when r increases). It is therefore adequate to evaluate it for small values of
r, for which ρ(r) can be Taylor expanded to give ρ(r) ' 1 − 1/2r2/a2

φ. and we get

〈
E(x)E∗(x+ r)

〉
= E2

i e
−φ2

0
r2

a2
φ .

The emergent electric field hence has a finite coherence length (while the coherence length
of the incident plane wave was infinite). From the van Cittert-Zernike theorem this is
equivalent to saying that the original unresolved point source has got blurred out to a
source of finite size. This blurring out of point sources is called “angular broadening”
or “scatter broadening”. If we define a = aφ/φ0 then the visibilities have a Gaussian
distribution given by e−ir

2/a2 , meaning that the characteristic angular size θscat of the
scatter broadened source is ∼ λ/a ∝ λ2

√
∆n2L. θscat is called the “scattering angle”.

On the other hand if φ2
0 is small then the exponent in eqn 16.5.6 can be Taylor ex-

panded to give
〈
E(x)E∗(x+ r)

〉
= E2

i

[
1 − 2φ2

0(1 − ρ(r))
]
,

= E2
i

[
(1 − 2φ2

0) + 2φ2
0e

−r2

2a2
φ

]
.

This corresponds to the visibilities from an unresolved core (of flux density E2
i (1 − 2φ2

0))
surrounded by a weak halo.

2This follows from the equation for φ(x) if you also assume that < ∆n(x, z)∆n(x, z
′
) > = ∆n2δ(z, z

′
).
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16.6 Scintillation
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Figure 16.5: Scintillation due to the ionosphere

In the last section we dealt with an ionosphere which had random density fluctuations
in it. In the model we assumed the density was assumed to vary randomly with position,
but not with time. In the earth’s ionosphere however, the density does vary with both
position and time. Temporal variations arise both because of intrinsic variation as well
as because of traveling disturbances in the ionosphere, because of which a given pattern
of density fluctuations could travel across the line of sight.

This temporal variation of the density fluctuations means that the coherence function
(even at some fixed separation on the surface of the earth) will vary with time. This phe-
nomena is generically referred to as “scintillation”. Depending on the typical scattering
angle as well as the typical height of the scattering layer from the surface of the earth,
the scintillation could be either “weak” or “strong”.

As discussed in the previous section, rays on passing through an irregular ionosphere
get scattered by a typical angle θscat. If the scattering occurs at a height h above the
antennas, then as shown in Figure 16.5 these scattered rays have to traverse a further
distance h before being detected. The transverse distance traveled by a scattered ray is
∼ hθscat. If this length is much less than the coherence length a, then the rays scattered
by different irregularities in the scattering medium do not intersect before reaching the
ground. The corresponding condition is that hθscat < a, i.e. hθscat < λ/θscat or hθ2scat < λ.

If this condition holds, then, at any instant of time, (as discussed in the previous
section), what the observer sees is an undistorted image of the source, which is shifted
in position due to refraction. As time passes, the density fluctuations change3 and so

3but we assume that their statistics remain exactly the same, i.e. that they continue to be realization of a
Gaussian random process with variance φ0 and auto-correlation ρ(r)
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the image appears to wander in the sky and in a long exposure image which averages
many such wanderings, the source appears to have a scattered broadened size θscat.
Provided that one can do self calibration on a time scale that is small compared to the
time scale of the “image wander”, this effect can be corrected for completely. On the
other hand, when the hθ2

scat > λ the rays from different density fluctuations will intersect
and interfere with one another. The observer sees more than one image, and because of
the interference, the amplitude of the received signal fluctuates with time. This is called
“amplitude” scintillation. Amplitude scintillation at low frequencies, particularly over the
Indian subcontinent can be quite strong. The source flux could change be factors of 2
or more on very short timescales. This effect cannot be reliably modeled and removed
from the data, and hence observations are effectively precluded during periods of strong
amplitude scintillation.
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