Simulations of Imaging Extended Sources with The GMRT and uGMRT

Deepak Kumar Deo Ruta Kale (NCRA-TIFR)

SPARCS 2016

Motivation

• Extended sources – diffuse or/and discrete matter in the Universe

Linear size (L) extends to ~ Mpc scale

- Imaging of Mpc size extended sources (e.g. radio halos) through GMRT and its upgrade
- Radio halos: redshift, $z \sim 0.01$ to 1.0
- L = 1Mpc \rightarrow angular size (θ) ~ 79' to 2' for z = 0.01 to 1.0
- Such large angular size are challenging targets for imaging with interferometer
- Limitations: Largest θ sampling (shortest baseline)
 - differentiation of discrete from diffuse emissions (longest baseline)
- Understanding the limitations in imaging of such large angular size extended sources through GMRT and uGMRT

OVERVIEW

Making model image

- Used CASA Toolkit (image analysis & component list tools)
- Shape: 2D Gaussian; Ra, Dec : 4hr, 60°
- Linear size, L = 1 Mpc (FWHM)
- $z = [0.05 1.0], \ \theta \sim [17' 2'], \ \nu = 610 MHz$
- Flux density (S) = 0.6 Jy at z = 0.05 (A2163 radio halo)
- S at higher z was scaled according to distance

Simulating visibility & Imaging

- Image analysis & simulation tools
- Antenna Configuration: GMRT
- Noise free
- Bandwidth: 1 MHz (1chan), $v_c = 610 MHz$

33 MHz (33 chans), $v_c = 316 MHz$ 100 MHz (100 chans), $v_c = 350 MHz$ 200 MHz (200 chans), $v_c = 400 MHz$

- CLEAN task in CASA for imaging
- MS-MFS cleaning

Comparison: Model vs CLEANed

• Flux density (S) recovery

% S recovery = $\frac{S_{CLEANed}}{S_{Model}} \times 100$

- Morphology recovery
 - Gaussian fit was done for comparison

Cases studied

Recovery as function of:

 angular size (or redshift)
 Source flux density (S)
 Declination (Dec)
 Observing duration (T_{obs})
 Bandwidth (BW)

Angular size, θ (or z)

Flux recovery, 1MHz, $\nu = 610MHz$, $T_{obs} = 2hrs$ from transit

Source strength (*S*)

Flux recovery, 1*MHz*, $\nu = 610MHz$, $T_{obs} = 2hrs$ from transit

Source strength (S)

Morphology recovery, $\theta \sim [17', 9']$

Declination

Flux recovery, 1*MHz*, $\nu = 610MHz$, $T_{obs} = 2hrs$ from transit

Declination

Visibilities, 1MHz, $\nu = 610MHz$, $T_{obs} = 2hrs$ from transit

Declination

Morphology recovery, $\theta \sim [17', 9']$

Observation duration

- Source was observed for different durations beginning from the rise time
- Observation was made at 2, 4, 6 and 12hrs (full synthesis) leading to improved PSF gradually
- BW = 1MHz, $v_{obs} = 610$ MHz, Dec. = +60°
- 2hrs spread over 12hrs

- 6 scans of 20 minutes each

Observation Duration

Flux recovery, 1MHz, $\nu = 610$ MHz

Observation Duration

Morphology recovery, $\theta \sim [17', 9']$

2hrs spread over 12hrs

Flux recovery, 1MHz, $\nu = 610$ MHz, $\theta \sim [17', 9']$

2hrs spread over 12hrs

Morphology recovery, $\theta = [17', 9']$

Bandwidth

- Comparison was made in P-band
- Observations simulated:
 - GMRT: 33MHz (300 332 MHz)
 - uGMRT: 100MHz (300 399 MHz)
 - uGMRT: 200MHz (300 499 MHz)
- Largest angular size at 300MHz = 34'
- $T_{obs} = 2hrs$ from rise time
- Dec. = $+60^{\circ}$

Bandwidth

Flux recovery, $T_{obs} = 2hrs$ from rise, +60°

Bandwidth

Morphology recovery, $\theta \sim [34', 17']$

Summary

- S and morphology recovery ~ 100% for sources at z > 0.2 or $\theta < 5'$ for $T_{obs} = 2hrs, v = 610MHz$
- Recovery is independent of source strength (noise free simulation)
- Lower declination sources shows better recovery at $z < 0.2 \text{ or } \theta > 5' (\nu = 610 MHz)$

- more short projected baselines

Recovery increases with observing duration

- 2hrs over 12hrs \equiv 12hrs observation

uGMRT shows better recovery than GMRT

- S recovery from uGMRT improves by factor of 2 for the source with θ corresponding to shortest baseline

Implication to survey strategies

Future work

- Adding noise in the simulated observation
 - Studying the cases in presence of noise
- Studying the cases with model sky as a real source
 - Abell 2163 1.4 GHz VLA image
- Imaging the real uGMRT data
 - Comparing real and simulated observation

THANK YOU

Supplementary slides

Flux density (S) of the model source

$$S \propto v^{\alpha}$$
$$\frac{S_{model}}{S_{A2163}} = \left(\frac{v_{model}}{v_{A2163}}\right)^{\alpha}$$

 $S_{A2163} = 0.155 Jy$ $\nu = 1.4 GHz$ $\alpha = -1.6$ (Feretti et al. 2001) $S_{model} \sim 0.6 Jy$ $\nu = 610 MHz$ z = 0.05

Quantifying UVcoverage

$Z = 0.05, \ \theta \sim 17'$

2hrs

2hrs over 12hrs

12hrs

 $Z = 0.1, \ \theta \sim 9'$

Simulating model image

- Used Python and CASA Toolkit
- Shape: 2D Gaussian
- Linear size, L = 1 Mpc
- Redshift, z = [0.05, 1.0]
- Ang. Size, *θ* ~ [17', 2']

$$\theta (in arcmin) = \frac{L}{D_A(z)} \times 3437.75$$

Mattig's relation:

$$D_A(z) = \frac{c}{H_o} \frac{2}{\Omega_m^2 (1+z)^2} \left[\Omega_m z + (\Omega_m - 2)(\sqrt{1 + \Omega_m z} - 1) \right]$$

Where $D_A(z) = angular \ diameter \ distance$, $H_o = 67.8 \frac{km}{s} / Mpc$, $\Omega_m = 0.3$

Flux density (S) of the source

$$S = \frac{L}{4\pi D_L^2(z)}$$
, $D_L(z) = Luminosity distance$

 $D_L(z) = (1+z)^2 D_A(z)$

$$S(z_2) = S(z_1) \times \left(\frac{1+z_1}{1+z_2}\right)^4 \times \left(\frac{D_A(z_1)}{D_A(z_2)}\right)^2$$

 $S \propto v^{\alpha}$

$$\frac{S_{model}}{S_{Abell2163}} = \left(\frac{610}{1400}\right)^{-1.6}$$

 $S_{Abell2163} = 0.155 Jy, \qquad S_{model} \sim 0.6 Jy$

Morphology recovery

z = [0.05, 0.1]

 $\theta = [17', 9']$

variable: S

Morphology recovery

z = [0.05, 0.1]

 $\theta = [17', 9']$

variable: Dec.

Beam size

Dec.	1MHz	33MHz	200MHz
+60	$4.98" \times 4.13"$	$4.76" \times 4.05"$	$6.84" \times 5.99"$
0	$5.58" \times 4.59"$	•	•
-30	$12.72" \times 4.11"$		•
-50	44.21"× 3.61"	$38.80" \times 3.34"$	•

• 1 *MHz*, 2*hrs*, +60°

• $2hrs, +60^{\circ}, z = 0.05 (16.8')$

• $2hrs, +60^{\circ}, z = 0.1 (9'), BW$

UV coverage and PSf at +60

UV coverage and PSF at 0

UV coverage and PSF at -30

UV coverage and PSF at -50

