SZE-Radio Halo composite: Disentangling diffuse emission & pressure sub-structures in galaxy cluster mergers

Abhirup Datta (on behalf of Siddharth Malu) Centre of Astronomy, IIT Indore

S. Colafrancesco, S. Paul, E. Hallman, J.O. Burns November 5, 2016, SKA / SPARCS 2016

Outline

SZ Effect

Motivation for observing clusters at 18 GHz – complex astrophysics of mergers

Results from 18 GHz obs. of the Bullet cluster

Separating Diffuse emission & SZ effect at cm-wavelengths

SZ Effect: The Standard Lore

Clusters of Galaxies:

Largest gravitationally bound objects Size ~ few Mpc $= 10^{22} - 10^{23} \,\mathrm{m}^{23}$ Largest collections of hot gas $M_{galaxies} \sim 10^{13} M_{sun}$ $M_{gas} \sim 10^{15} M_{sun}$ $T_e \sim 10^7 - 10^8 \text{ K}$ $n_{e} \sim 10^{-4} - 10^{-2} \text{ cm}^{-3}$

Galaxy cluster mass:

Baryons 10% stars/galaxies 15-20% hot gas

Dark Matter 70%

Carlstrom et al. 2003

The Bullet Cluster: a merging system

Redshift z=0.296, or 10.3 Gyr after the Big Bang (4 arcmin = 1 Mpc; 1 arcsec = 4 kpc)

Slide courtesy Colafrancesco

Temperature from Chandra ACIS spectral energy in 0.9-9.5 keV band

- Coolest part is the gas in the bullet 7 keV
- There is a temperature and density jump (3-4) at the shock and at the contact discontinuity between the bullet and ambient gas
- Bullet Mach number 2-3 (4700 km/s): collision 100 Myr ago.
- Hottest part is to SE → 24 keV where there are several bright galaxies
- → Should SZ offset from X-ray have been expected?

Markevitch et al. 2002

XMM data

- \rightarrow (From top left, clockwise): X-ray emission, Temperature, Entropy and Pressure maps
- \rightarrow Shock position consistent with observed SZ effect at the same location

0.002

0.004

10 a. n

Radio Halo in the bullet cluster Govoni et al. 2004

...but didn't expect to see any diffuse emission at 18 GHz or higher...

 \rightarrow Because spectrum of diffuse emission is expected to steepen beyond 5 GHz...

→ Main aim: probe sub-structure in SZ effect in Bullet cluster at 18 GHz
→ Demonstrate usefulness of cm-wave observations for SZE

Halverson et al. 2009

150 GHz APEX SZ Effect map of the Bullet cluster

85 arcsec beam 0.88 mK decrement , contours 0.1mK

Merger activity is expected to affect the SZE,

...but this single-dish image does not show any structure in SZE...

Massardi et al. 2010

→ SZ Effect Detection using the ATCA

 \rightarrow Robust detection

 \rightarrow Luckily, no diffuse emission in this cluster

CIJ0152-1357

SZ Effect at 18 GHz from interferometric observations

38x32 arcsec beam

 7μ Jy/beam rms noise

Peak +ve feature: 60μ Jy/beam Deepest -ve feature: -83μ Jy/beam

 \pm (3,4,5,6,7,8,9,10) σ

Bullet cluster at 18 GHz

7 μ Jy/beam rms noise

Dark = +ve

Light = -ve

DEC (J2000)

The Bullet cluster at 18 GHz

Noise RMS 7 µJy/beam

 \pm (3,4,5,6,7,8,9,10) σ

Peak +ve feature: 60μ Jy/beam Deepest -ve feature: 83μ Jy/beam

A consistency test:

Compare the data in the ring with the data in the same ring in Stokes-V map, using a non-parametric test

Result: p-value<0.0001, i.e. inconsistent with noise at high significance

(J2000

DEC

z-value~-14

The 18 GHz interferometric image shows several features...

Some surprises ...

\rightarrow Diffuse emission at 18 GHz

With spectral steepening at ~ 6 GHz, expected a peak of ~ 10 μ Jy/beam (i.e. < 2 σ); get ~ 60 μ Jy/beam

\rightarrow SZ Effect displaced from X-ray brightness centre

Significant displacement of SZE from X-ray is observed in other merger clusters as well -- Similar to Massardi et al. 2010

Conclusions

- First detection of diffuse emission in a cluster at 18 GHz
- Merging clusters great for studying complex dynamics and physics
- Integrated Compton parameter (SZE) is a good tool for probing dynamics, BUT
 SZE and diffuse emission 'contaminate' each other
- Need to figure out how to model or estimate either SZE or diffuse emission exactly with the same uv-coverage. Right now, high-frequency SZE observations @ very low resolution only → complete uvcoverage mismatch!

