From GMRT to uGMRT and beyond: Prospects for studying diffuse extended sources

Ruta Kale

National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune, India SKA-MID

SKA-LOW

Outline

- Galaxy clusters: diffuse large-scale radio sources
- Extended GMRT Radio Halo Survey: Precursor to future cluster surveys
- Ongoing projects: Filling the gaps in sky and redshift
- Spectral index mapping: wide band implications
- uGMRT :early images from the 16 antenna system
- Summary

Clusters surveys

Extended GMRT Radio Halo Survey (GRHS + EGRHS)

Clusters surveys

Extended GMRT Radio Halo Survey (GRHS + EGRHS)

Clusters near and far: Planck, SPT

Clusters near and far

Extended GMRT Radio Halo Survey

Ongoing projects

 Southern Cluster Scale Extended Source Survey (SUCCESS): low and high mass; near and far

GMRT 325 and 610 MHz observations scheduled for first set of targets.

Ongoing projects

- Radio follow up of Massive and Distant Clusters from the WISE Survey (MADCoWS)
 z > 0.8
- GMRT 1280 and 610 MHz analysis of 4 clusters completed.

Cluster	RAJ2000	DEC _{J2000}	Vobs	rms	Beam
MOO_			MHz	mJy b ⁻¹	"×", p. a.
J0012+1602	00 12 13.0	+16 02 16	1280	0.045	$2.6 \times 2.0, 63.4^{\circ}$
J0133-1057	01 33 55.6	-10 57 44	610	0.051	5.1 × 4.9, 31.5°
J1155+3901	11 55 45.4	+39 01 06	610	0.04	5.4×4.1, 43.2°
J1514+1346	15 14 43.8	+13 46 32	610	0.06	5×4, p. a. 42.7°

Kale and Parekh, 2015, POS

MOO J1514+1346

Kale and Parekh, 2015, POS

MOO J1155+3901

Kale and Parekh, 2015, POS

Current GMRT

 $\Delta v/v$

Narrow band frequency coverage in 5 frequency bands

Upgraded GMRT Vs GMRT $\Delta v / v$ >0.8 0.5 0.3 0.25 0.21 0.14 0.1 0.05 0.02 250-500 550-900 1000 to 1500 130-260

Frequency (V) MHz

uv-coverage: the long and short of it

Broad bandwidths imply better uv-coverage

uv-coverage: the long and short of it

- Spectral index and spectral curvature mapping for extended synchrotron sources
- Upper-limits on non-detections of extended emission

uv-coverage: upper limits on nondetection of extended sources

Narrow band observations at two frequencies with different or same telescopes

Spectral index mapping: - restrict uv-distances to that in the overlapping range

BUT:

Even in the overlapping range the coverage is different in detail: Different telescopes; flagging; observation for unequal duration

GMRT+VLA Kale & Dwarakanath 2010

Comparison of GMRT 610 and 235 MHz uv-coverages

Comparison of GMRT 610 and 235 MHz uv-coverages

Filling fraction = F_{FL} = 11 %

Overlap fraction = F_{ol} = 72 %

Wide bandwidth means implies factors ~100% overlap and >50% filling factors

- Wide bandwidth observations will improve spectral index mapping
- MS-MFS clean** Rau et al. 2011

Abell 2256 JVLA 1-2 GHz Owen et al. 2014

• uGMRT 300-500 MHz

**works also for concatenated narrowband data

Owen et al. 2014

Rottgering et al 1997; Carke and Ensslin 2006; Kale and Dwarakanath 2010; van Weeren et al 2009,2013, 2016; Intema et al. 2009.

16 antennas (RR, LL) 0.3 – 0.5 GHz Bandwidth ~ 200 MHz 2048 channels Time ~ 9 hours

Owen et al. 2014

Rottgering et al 1997; Carke and Ensslin 2006; Kale and Dwarakanath 2010; van Weeren et al 2009,2013, 2016; Intema et al. 2009.

Radio frequency interference: online excision needed !

uGMRT observations of galaxy clusters

Changing RFI environment in the observing session

16 antennas (RR, LL) 402 MHz image Bandwidth ~ 200 MHz Time ~ 8 hours About 40 – 50% data flagged. Rms ~ 400 microJy/b Beam = 17.6'' x 8.2''

Kale and Dwarakanath 2012

GMRT 610 MHz

16 antennas (RR, LL)
L band: 1000 – 1400 MHz
Bandwidth = 400 MHz
Time ~ 4 hours
CASA : Each polarization reduced separately**
Self-calibration (only LL shown here)

** CASA flags the entire antenna even if a single pol of that antenna is flagged.

Nocimution

uGMRT challenges

- RFI Online excision (Kaushal's talk)
- Computing challenge
- Wide band primary beam

- Galaxy clusters surveys: exploration of southern sky, very low and high redshift clusters, low mass clusters
- Ongoing projects with the GMRT: SUCCESS and Radio follow-up of MADCoWS.

uGMRT: 16 antenna system providing the first glimpse of low frequency wide-band images – Abell 2256 and Abell 4038

uGMRT : RFI – online excision, automated flaggers Computation Wide band primary beam

uGMRT: Promising prospects for future low-frequency wideband images