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• Why did LOFAR need PyBDSM ?

• How does it work ?

• Background estimation

• Deblending and reblending

• Deaddiction from gaussians

• Measuring PSF variation 

• Dealing with extended structures

• Spectral index, RM, polarisation

• Background estimation revisited - measuring artifacts

• SKA challenge



PyBDSM - why, how, where ?
Rudimentary source extraction used to be done in AIPS, Miriad 

Modern low frequency interferometry data pose challenges for source 
extraction

• Wide fov 
    rms varying across image, speed of processing

• Non-isoplanicity within fov 
   artifacts around bright sources, psf variation across image

• Many extended and diffuse sources (high brightness sens + high res) 
   need non-gaussian basis to sparsify, parametrise complicated morph

• Large bandwidths 
   freq dependence of fluxes, posn due to ionosphere, calibration, morphology

• Larger source density, source confusion 
   affects background estimation, threshholding

• Need spectral indices, RM 
   for point and extended sources, varying SNRs across source



PyBDSM (Python Blob Detection and Source Measurement) written for 
LOFAR, at Sterrewacht Leiden (2007-10) 

Used by the LOFAR survey project for catalogues and calibration 

Maintained currently by Rafferty (2010-)

Being used extensively for  
SKA SA (calibration + CLEAN loop) 
GMRT (automated archive processing, catalogues) 
TGSS ADR

Performed well in the Source Finding Challenge (Hopkins et al, 2015) among

Aegean (radio, point sources) 
APEX (Spitzer) 
Blobcat (floodfill blobs, pol) 
CuTEx (Herschel) 
IFCA (SE + filters) 
PyBDSM (LOFAR)

PySE (LOFAR transients) 
SAD (AIPS) 
SExtractor (optical) 
SOURCE_FIND (AMI) 
Duchamp (HI) 
Selavy (ASKAP)

PyBDSM - why, how, where ?



• Read in 4-d FITS of Casa-format images. Source extraction done on user-
defined contm image

PyBDSM - the vanilla version

• Computes sensible values for parameters unless specified by user (110+ user 
specifiable parameter)

• Computes background rms and mean images (crucial step, more on this)

• Thresholding (hard, False Detection Rate)

• Decompose thresholded image into islands of contiguous islands

• Segmentation, deblending of islands of emission

• Each island is fit with multiple gaussians (LM+others), scale-free algorithms 
for initial guesses for extended structure

• Output gaussian catalogue with errors, residual images



PyBDSM - the vanilla version
Original image Fitted islands

Gaussian model Residual image



• Within each island, fitted multiple gaussians are grouped into ‘physical’ 
sources and classified. Corresponds well to what we would do visually

Bells and whistles : reblending

Blue crosses : outline of an island 

Ellipses : fitted gaussians in the islands 

Different colours in an island are different sources



• For the detected sources, spectral indices and RMs are derived from the 4-d 
cubes

Bells and whistles : spectral index

Takes into account varying scenarios of 
• frequency dependence of SNR of fitted components 
• frequency dependence of morphology and fits of extended emission

Recover flat core and 
steep lobes in compact 

AGN!



• Wavelet transforms are used to characterise extended emission

Wavelets for extended emission

• First run standard PyBDSM, subtract fitted gaussians 

• Run a trous wavelet transform on residual image 

• Now run scale-free version of PyBDSM on each wavelet transform image  

• Create catalogue of gaussians at each wavelet scale 

• Group these gaussians using the pyramidal representation to parametrise 
extended emission 

• Calculate  wavelet model images and residual images



• Wavelet transforms are used to characterise extended emission

WENSS image

Residual image w1 image w2 image

w3 image w4 image w5 image

Image after subtracting 
gaussians, and subsequent 
wavelet transform images

Pyramidal representation of gaussians 
fitted to each wavelet image

Wavelets for extended emission



180-gaussian multi-scale wavelet model of Virgo A

• Wavelet transforms are used to characterise extended emission

Original image Reconstructed image from 180 
gaussians from wavelet transform

Wavelets for extended emission



A multi-scale wavelet model of Hydra A

• Wavelet transforms are used to characterise extended emission

Original image PyBDSM model CLEAN model

PyBDSM residual CLEAN residual

Wavelets for extended emission



Shapelet transforms as a basis
• Shapelet transforms are used to parametrise island emission in addition to 

gaussians

However, gaussian decompositon is not unique and are constrained by the 
beam, and hence

Gaussians are natural to model simple sources since the synthesized beam is 
a gaussian

• Throwing 100s of gaussians at an extended source is not a good idea 

• Cannot easily capture small departures from gaussianity in compact 
sources

Hence, need an orthonormal basis set that is compact, and to first order is a 
gaussian

The answer is the shapelet transform



• Shapelet transforms are used to parametrise island emission in addition to 
gaussians

2d cartesian 
shapelet basis set

Cartesian shapelets are Hermite 
polynomials multiplied by a gaussian

• First order is a gaussian 

• They are highly localised 

• They are orthonormal 

• Sparsify emission in min number of 
shapelet coefficients, can reconstruct

Shapelet transforms as a basis



• Shapelet transforms are used to parametrise island emission in addition to 
gaussians

Simulated image Shapelet reconstruction

Shapelet residual Shapelet coefficient matrix

Shapelet transforms as a basis



• Shapelet transforms are used to parametrise island emission in addition to 
gaussians

Cas A 
74 MHz 

VLA 
image

Shapelet 
reconstruction

Shapelet 
residual

Shapelet 
coefficient

Shapelet transforms as a basis



PSF variation across the image
• PSF variation across the image is estimated and a ‘psf map’ is created. This 

can be used to correct the catalogue astrometry and photometry

The effective psf, or shape of point sources, will vary across the image due to

• Field of view is a few times larger than isoplanatic size 
• Calibration efficiency varies spatially for DD calibration

PyBDSM does the following

• Identify ‘true’ point sources from fitted gaussians 
• Voronoi tesselate the image around bright sources 
• Average psf of  ‘true’ point sources in each tile 
• Decompose each average psf into shapelet coefficients 
• Interpolate each shapelet coefficient across the image 
• Reconstruct the psf on a grid from these interpolated coefficients



• PSF variation across the image is estimated and a ‘psf map’ is created. This 
can be used to correct the catalogue astrometry and photometry

Right            : Tiled image with all point sources 
Left bottom  : Co-added psf in each tile              
Right bottom: gridded interpolated PSFs

PSF variation across the image



Background rms image
The most crucial step in any source extraction software is the estimation of 
background rms variation across the image

The rms is estimated within boxes of a certain size and then interpolated 
across the image. This box size has to be carefully chosen

4 different images Corresponding rms images

The choice of the box size can create false sources and destroy real ones. All 
source extraction softwares leave this as a user defined parameter



No one size to fit them all
The optimal box size depends on

• Intrinsic variation scale of rms (primary beam) 
• Source density 
• Distributon function of source sizes 
• Sizes of artifacts due to calibration errors

Choice of box size prevents full automation of source extraction 

Value chosen determines your source catalogue

The first three factors are constant for an image and can be automated

The last factor is flux dependent, and is hence visually estimated 



If the box size is larger than the artifact size, the rms is underestimated and 
artifacts are detected as real sources

Parts of P37 image from LOFAR HBA survey (image courtesy Shimwell)

rmsbox=100 rmsbox=200 rmsbox=300

rmsbox=500 rmsbox=700 Original image

Greyscale for the rmsbox images are saturated at 3 sigma

No one size to fit them all



If the box size is smaller than the size of extended sources, then the rms is 
overestimated and the large parts of the emission goes undetected

No one size to fit them all

Bright sources dissapear when a 
2nd box of 30 pixels was used in 
the LOFAR PyBDSM pipeline

Parts of P2 image from 
LOFAR HBA survey (image 
courtesy Shimwell)

Original image

Original image SNR image

SNR image



PyBDSM circa 2012 (Rafferty) : 

User specifies one box size for entire image and a smaller box 
size around N brightest sources 

PyBDSM circa 2008 : 

Internally calculates box size based on expected source 
counts, sizes and primary beam variation

User visually estimates maximum artifact size in image and 
inputs it instead

Calculate the artifact size as a function of source flux from the 
image itself

PyBDSM circa 2017 :

Calculate rms in boxes with flux-dependent sizes and 
interpolate across the image

No one size to fit them all



No one size to fit them all
Identify N brightest sources in 
an image

P18 image from the LOFAR HBA 
survey (image courtesy Shimwell)

For each source, calculate rms 
in concentric squares, fit a 
function



No one size to fit them all
Identify N brightest sources in 
an image

For each source, calculate rms 
in concentric squares, fit a 
function

Calculate radius at which rms is 
a factor from global rms for an 
outer scale

Artifact ‘size’ versus source flux

Also calculate ‘e-folding’ radius 
for an inner scale



No one size to fit them all
Identify N brightest sources in 
an image

For each source, calculate rms 
in concentric squares, fit a 
function

Also calculate ‘e-folding’ radius 
for an inner scale

Artifacts around 20 brightest sources 
(green/blue : outer scale; red : inner scale) 

Calculate radius at which rms is 
a factor from global rms for an 
outer scale



No one size to fit them all

RMS is evaluated inside each of 
these boxes and interpolated

To correct the rms image 
around bright sources

Implement a scheme to decide 
on nested boxes of decreasing 
size around each source

These boxes depend on the flux 
of each source

Centres of boxes to calculate rms inBlack : original regular grid
Blue and red : new smaller boxes



No one size to fit them all

RMS image, single box size

RMS image, adaptive boxes

RMS image, adaptive boxes, same 
scale as single box image



No one size to fit them all

Original image SNR (old method) SNR (new method)

P1 image from the LOFAR HBA survey (image courtesy Shimwell)

We can now construct the interpolated rms image that samples the rms 
variation differentially based on source flux



No one size to fit them all



No one size to fit them all
One needs to run this analysis down to low SNR (~50) 
and small sizes (< 5 beams)

We need to fine tune this part of PyBDSM and re-run on the LOFAR HBA 
survey images to recreate more accurate catalogues and calculate 
completeness as a function of flux (and size)



What else is needed for SKA?

• Algorithms need to be tuned better, with schema to estimate optimal 
parameters from the image itself 

• Estimate astrometric and photometric quality factors from analysis 

• PyBDSM has a separate path for A team sources, but needs improvement 

• PSF variation algorithm to be adapted for various calibration techniques 

• Machine Learning to recognise morphologies and for classification 

• More accurate errors on fitted parameters (move beyond Condon) 

• Explore other basis sets, e.g. directional wavelets (ridgelets, curvelets) for 
diffuse structures 

• Make the runtime faster





Testing the vanilla version
Simulate sources from known counts, gaussian fits from PyBDSM and SAD/AIPS

Compare performance by parametrising departure from input flux, posn, 
width etc vs SNR

var(
S1

S2
) = [c2

1 +
c2
2

SNR2
]
1
2

For example, peak flux ratios S1/S2

PyBDSM   : c1 = 2 x 10-6,    c2 = 1.11 

SAD/AIPS : c1 = 5 x 10-6,    c2=1.11

PyBDSM SAD/AIPS



Bells and whistles : reblending



PyBDSM multi-scale wavelet model of Abell 2255

• Wavelet transforms are used to characterise extended emission

Original image PyBDSM model

Residual Wavelet model

Wavelets for extended emission



Deblending Of Gaussians
For islands which are extended, have many peaks of emission and are larger than around 5 
beams, the initial guess for the gaussian fitting procedure is fairly important. This deblending 
of extended sources can be done in many ways.

SExtractor does deblending by producing a 
tree structure with flux contrast criterion. AIPS 
fits multiple gaussians based on successive 
chi square, with initial guesses. MOPEX uses 
multiple thresholds. 

PyBDSM has three method for determining the 
initial guess for the gaussian set, to be used 
for active deblending while fitting. 

Deblending scheme for SExtractor

1.Assume a synthesized beam at the peak pixel and fit a gaussian. If the brightest peak in 
the residual image is higher than a threshold, add another gaussian (shaped like the 
beam) at this position and iterate. 

•  Used in SAD/AIPS 
•  Is usually sufficient for most islands 
•  Doesn’t work for very large sources, with components much bigger than beam  



Deblending Of Gaussians
2.Obtain all distinct peak pixels, assume a gaussian (like a beam) at each location. 

Calculate the residual image. If the peak value and rms of the residual image are large 
enough and the peak pixel is not too close to the existing list of gaussians, place another 
gaussian (like a beam) at the peak pixel and iterate. This is the default option.  

3.Scale-free guess, (used for wavelet transforms). This is not trivial. For a single peak, we 
take the moments. For more than one peak, the watershed algorithm is used to divide the 
island into distinct areas around each peak. For each such area, a mask is created and a 
gaussian is fit using  its moment as the initial guess. The set of all such gaussians, one for 
each area, is the set of initial guesses for the island. Finally, the diffuse emission is also 
similarly fit, to provide one more guess solution.  

Fitting very large islands (typically > 50 
beams) which need 10s of gaussians takes 
forever. These islands are split into smaller 
ones for fitting purposes using the Opening 
operator (either 3x3 or 5x5) and some 
constraints including convex deficiency

Three islands in the w1 wavelet transform of 
Cygnus A 327 MHz image, and their splitting 
into sub-islands.



Shapelets are a complete orthonormal basis 
set.  

Cartesian shapelets are Hermite polynomials, 
weighted by a gaussian. Polar shapelets use 
Laguerre polynomials instead.

Shapelets As A Basis Set

• Shapelets are highly localised 
• The first order shapelet is a gaussian 
• They are orthonormal and have simple FT and 

convolution properties 
• They are defined by a centre and a scale 
• The inner products of 2 shapelets in x and y yields 

an orthonormal 2d shapelet basis 
• Localised images are extremely well decomposed 

by shapelets (for a given maximum order) 
• Shapelets have been used in weak lensing and 

now, in radio (and optical) astronomy

(See papers by Refregier, Bacon, Jarvis, Kuijken etc)



Shapelets As A Basis Set

(Massey et al 2007)2d cartesian shapelet basis set

Cartesian shapelet 
decomposition of a 
simulated image

Original image Shapelet model image

Residual image Shapelet coefficients

Shapelet reconstructed (top 
row) and the residual (bottom 
row) for nmax as indicated on 
the figures.



A point source is in principle, unresolved with the psf of the image. However, generating a 
catalogue of point sources depends on our knowledge of the psf, and for low frequencies, its 
variation across the image as well. Hence, given just an image with no extra information, we can 
only generate a statistically most probable set of point sources from the image itself. 

A compact source is a source with only one peak (and is fit not very well by 1 gaussian). 

An example is the psf variation algorithm in PyBDSM.  Assume that most of the sources are 
indeed unresolved. 
 

• Plot the distribution function of fitted gaussian 
widths  

• Bin these quantities. In each bin, iteratively clip 
the outliers assuming a normal distribution 

• Now iteratively fit a function to the median and 
rms of the binned values (2nd order poly for 
median and sqrt(a+b/x^2) for the rms, clipping 
outlier bins 

• All sources within 2 sigma of the fitted function 
are deemed to be point sources.

Identifying Point Sources



 PSF variation across the image 

Right : Tiled image with all point sources 
Left bottom: Co-added psf in each tile              
Right bottom: gridded interpolated PSFs



Segmentation by Watershed algorithm or flood-filling

Imagine each minima (or predefined 
set of points) to be where water starts 
flowing from. We define ‘catchment 
areas’ bounded by maxima and when 
they intersect, we build ‘watershed’ or 
‘bunds’. This way, the entire image is 
segmented.

Segmentation by Voronoi Tesselation

Each pixel in an image is assigned to a 
tile based on its ‘distance’ from a 
predefined set of points. These distances 
can be any metric, with weights 
iteratively defined on each tile. There are 
fuzzy tesselations as well. Voronoi tiles 
are dual to Delauney triangulation. 


